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BANACH CONTRACTION PRINCIPLE ON CONE

RECTANGULAR METRIC SPACES

Akbar Azam, Muhammad Arshad, Ismat Beg

We introduce the notion of cone rectangular metric space and prove Banach

contraction mapping principle in cone rectangular metric space setting. Our
result extends recent known results.

1. INTRODUCTION AND PRELIMINARIES

Guang and Zhang [2] recently introduced the concept of cone metric space
and established some fixed point theorems for contractive type mappings in a nor-
mal cone metric space. Subsequently, several other authors [1, 3, 4, 5] studied the
existence of fixed points and common fixed points of mappings satisfying a con-
tractive type condition on a normal cone metric space. In this paper we introduce
cone rectangular metric spaces and prove Banach contraction mapping principle
in a complete normal cone rectangular metric space.

A subset P of a real Banach space E is called a cone if it has following
properties:

(i) P is nonempty closed and P 6= {0};

(ii) 0 ≤ a, b ∈ R and x, y ∈ P ⇒ ax + by ∈ P ;

(iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ on E with respect
to P by x ≤ y if and only if y − x ∈ P . We shall write x < y if x ≤ y and x 6= y,
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while x � y will stands for y−x ∈ intP , where intP denotes the interior of P. The
cone P is called normal if there is a number κ ≥ 1 such that for all x, y ∈ E,

(1) 0 ≤ x ≤ y ⇒ ‖x‖ ≤ κ ‖y‖ .

The least value of κ satisfying (1) is called the normal constant of P.

In the following we always suppose that E is a real Banach space and P is
a cone in E with intP 6= ∅ and ≤ is a partial ordering with respect to P. For more
details see [2, 3, 4].

Definition 1. [2] Let X be a nonempty set. Suppose that the mapping ρ : X×X →
E, satisfies :

(1) 0 ≤ ρ(x, y), for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X ;

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.

Example 1. [2] Let E = R2, ρ : X × X → E such that

ρ(x, y) = (|x − y| , β |x − y|) , β ≥ 0

P = {(x, y) : x, y ≥ 0} ⊂ R2.

Then(X, ρ) is a cone metric space.

Definition 2. Let X be a nonempty set. Suppose the mapping d : X × X → E,

satisfies :

(1) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X :

(3) d(x, y) ≤ d(x, w) + d(w, z) + d(z, y) for all x, y,∈ X and for all distinct

points w, z ∈ X − {x, y} [rectangular property].

Then d is called a cone rectangular metric on X , and (X, d) is called a cone

rectangular metric space. Let {xn} be a sequence in (X, d) and x ∈ (X, d). If for
every c ∈ E, with 0 � c there is n0 ∈ N such that for all n > n0, d(xn, x) � c, then
{xn} is said to be convergent, {xn} converges to x and x is the limit of {xn} . We
denote this by limn xn = x, or xn → x, as n → ∞. If for every c ∈ E with 0 � c

there is n0 ∈ N such that for all n > n0, d(xn, xn+m) � c, then {xn} is called a
Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d), then
(X, d) is called a complete cone rectangular metric space.

Example 2. Let X = N, E = R2 and

P = {(x, y) : x, y ≥ 0}.

Define d : X × X → E as follow:

d(x, y) =







(0, 0) if x = y,
(3, 9) if x and y are in {1, 2} x 6= y.
(1, 3) otherwise
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Now (X, d) is a cone rectangular metric space but (X, d) is not a cone metric space
because it lacks the triangular property:

(3, 9) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 3) + (1, 3) = (2, 6)

as (3, 9) − (2, 6) = (1, 3) ∈ P.

2. MAIN RESULTS

First we present two theorems whose proofs are similar to Huang and Zhang

[2, Lemmas 1 and 4]

Theorem 1. Let (X, d) be a rectangular cone metric space and P be a normal cone

with normal constant κ. Let {xn} be a sequence in X. Then {xn} converges to x

if and only if ‖d(xn, x)‖ → 0 as n → ∞.

Theorem 2. Let (X, d) be a rectangular cone metric space, P be a normal cone with

normal constant κ.Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence

if and only if ‖d(xn, xn+m)‖ → 0 as n → ∞.

Theorem 3. Let (X, d) be a cone rectangular metric space, P be a normal cone

with normal constant κ and the mapping T : X → X satisfies :

d(Tx, T y) ≤ λ d(x, y)

for all x, y ∈ X, where 0 ≤ λ < 1. Then T has a unique fixed point.

Proof. Let x0 be an arbitrary point in X . Define a sequence of points in X as
follows:

xn+1 = Txn = T n+1x0, n = 0, 1, 2, . . . .

We can suppose that x0 is not a periodic point, in fact if xn = x0, then,

d(x0, Tx0) = d(xn, Txn) = d(T nx0, T
n+1x0) ≤ λd(T n−1x0, T

nx0)

≤ λ2d(T n−2x0, T
n−1x0) ≤ · · · ≤ λnd(x0, Tx0).

It follows that
[λn − 1] d(x0, Tx0) ∈ P.

It further implies that
[

λn − 1

1 − λn

]

d(x0, Tx0) ∈ P.

Hence −d(x0, Tx0) ∈ P and d(x0, Tx0) = 0, this means x0 is a fixed point of T .
Thus in this sequel of proof we can suppose that xm 6= xn for all distinct m, n ∈ N.

Now by using rectangular property for all y ∈ X, we have,

d(y, T 4y) ≤ d(y, T y) + d(Ty, T 2y) + d(T 2y, T 4y)

≤ d(y, T y) + λd(y, T y) + λ2d(y, T 2y).
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Similarly,

d(y, T 6y) ≤ d(y, T y) + d(Ty, T 2y) + d(T 2y, T 3y) + d(T 3y, T 4y) + d(T 4y, T 6y)

≤ d(y, T y) + λd(y, T y) + λ2d(y, T y) + λ3d(y, T 2y) + λ4d(y, T 2y)

≤
3

∑

i=0

λid(y, T y) + λ4 d(y, T 2y), for all y ∈ X.

Now by induction, we obtain for each k = 2, 3, 4, . . . ,

(2) d(y, T 2ky) ≤
2k−3
∑

i=0

λid(y, T y) + λ2k−2 d(y, T 2y).

Moreover, for all y ∈ X,

d(y, T 5y) ≤ d(y, T y) + d(Ty, T 2y) + d(T 2y, T 3y) + d(T 3y, T 4y) + d(T 4y, T 5y)

≤
4

∑

i=0

λid(y, T y).

By induction, for each k = 0, 1, 2, . . . we have,

(3) d(y, T 2k+1y) ≤
2k
∑

i=0

λid(y, T y).

Using inequality (2), for k = 1, 2, 3, . . . we have,

d(T nx0, T
n+2kx0) ≤ λnd(x0, T

2kx0)

≤ λn

[ 2k−3
∑

i=0

λi
(

d(x0, Tx0) + d(x0, T
2x0)

)

+ λ2k−2
(

d(x0, Tx0) + d(x0, T
2x0)

)

]

≤ λn
2k−2
∑

i=0

λi
[

d(x0, Tx0) + d(x0, T
2x0)

]

≤
λn(1 − λ2k−1)

1 − λ

[

d(x0, Tx0) + d(x0, T
2x0)

]

≤
λn

1 − λ

[

d(x0, Tx0) + d(x0, T
2x0)

]

.

Similarly, for k = 0, 1, 2, . . . , inequality (3) implies that

d(T nx0, T
n+2k+1x0) ≤ λnd(x0, T

2k+1x0)

≤ λn
2k
∑

i=0

λid(x0, Tx0)

≤
λn

1 − λ

[

d(x0, Tx0) + d(x0, T
2x0)

]

.
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Thus,

d(T nx0, T
n+mx0) ≤

λn

1 − λ

[

d(x0, Tx0) + d(x0, T
2x0)

]

.

Since P is a normal cone with normal constant κ, therefore,

∥

∥d(T nx0, T
n+mx0)

∥

∥ ≤
λn

1 − λ
κ

∥

∥

[

d(x0, Tx0) + d(x0, T
2x0)

]∥

∥ .

Therefore, ‖d(xn, xn+m)‖ → 0 as n → ∞. Now Lemma 2 implies that {xn} is a
Cauchy sequence in X. Since X is complete, there exists u ∈ X such that xn → u.

By Lemma 1, we have

‖d(T nx0, u)‖ → 0 as n → ∞.

Since xn 6= xm for n 6= m, therefore by rectangular property, we have

d(Tu, u) ≤ λd(u, T n−1x0) + d(T nx0, T
n+1x0) + d(T n+1x0, u)

≤ λd(u, T n−1x0) + λnd(x0, Tx0) + d(T n+1x0, u).

Thus,

‖d(Tu, u)‖ ≤ κ
[

λ
∥

∥d(u, T n−1x0)
∥

∥ + λn ‖d(x0, Tx0)‖ +
∥

∥d(T n+1x0, u)
∥

∥

]

.

Letting n → ∞, we have
‖d(u, Tu)‖ = 0.

Hence u = Tu. Now we show that T have a unique fixed point. For this, assume
that there exists another point v in X such that v = Tv. Now,

d(v, u) = d(Tv, Tu) ≤ λ d(v, u).

Hence, u = v. �

Example. Let X = {1, 2, 3, 4}, E = R2 and

P = {(x, y) : x, y ≥ 0}

is a normal cone in E. Define d : X × X → E as follow:

d(1, 2) = d(2, 1) = (3, 6)

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 2)

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (2, 4).

Then (X, d ) is a complete cone rectangular metric space but (X, d) is not a cone metric
space because it lacks the triangular property:

(3, 6) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 2) + (1, 2) = (2, 4)

as (3, 6) − (2, 4) = (1, 2) ∈ P. Now define a mapping T : X → X as follows:

T (x) =

{

3 if x 6= 4,
1 if x = 4.
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Note that
d(T (1), T (2)) = d(T (1), T (3)) = d(T (2), T (3)) = 0

and in all other cases
d(Tx, Ty) = (1, 2), d(x, y) = (2, 4).

Hence, for λ = 1/2, all conditions of Theorem 3 are satisfied and 3 is a unique fixed point

of T .

Remark 1. In the example 3, results of Huang and Zhang [2] are not applicable to

obtain the fixed point of the mapping T on X, since (X, d) is not a cone metric space.
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