
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 3 (2009), 52–63. doi:10.2298/AADM0901052R

TRANSIENT LIMITS

Fred Richman, Katarzyna Winkowska-Nowak

Let A be a Markov matrix depending on a small parameter σ, and Cn the
average of the first n powers of A. The stationary distributions of A are the
rows of S = lim

n→+∞

Cn. The limiting stationary distributions are the rows of

lim
σ→0

S. We investigate transient limits of the sequence Cn. These idempotent

Markov matrices come up implicitly in an algorithm to compute limiting
stationary distributions. They represent the intermediate-term behavior of
the Markov chain at different time scales.

1. THE MOTIVATING EXAMPLE

Consider a network of m sites, each of which can be either in state −1 or 1.
The state of the network is described by a vector v of length m whose entries are ±1.
In addition, there is an m-by-m influence matrix C that describes the interaction
between the sites, and a noise vector X of length m consisting of independent

random variables Xi having a common density function of the form
1

σ
f

(
x

σ

)
,

where f is a symmetric nonnegative function such that
+∞∫
r

f(x) dx > 0 for all r,

so the noise is not bounded. The positive parameter σ represents the (average)
strength of the noise.

The stepping equation

v′ = sgn (X + Cv)

gives the state v′ of the system in terms of the state v at the previous time. This
defines a Markov chain with 2m states and a strictly positive transition matrix
A (σ). The matrices An (σ) converge to a matrix A∞ (σ) each row of which is
equal to the unique stationary distribution p (σ) for A (σ). In [2] an algorithm was
given for computing the limiting stationary distribution lim

σ→0
p (σ), which exists for
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a large class of families of Markov chains, including those coming from networks
with many standard noise density functions (see Section 3).

In the computation of the limiting stationary distribution in [2], other distri-
butions on the states appear. These distributions, although transient, persist over
long periods of time at small noise levels. They may be thought of as “transient
stationary distributions” and they reflect some of the dynamics of the chain, not
just its long term behavior. Although the limiting stationary distribution is inde-
pendent of starting state, the transient stationary distributions need not be. These
distributions are instances of the general notion of a transient limit.

A simple example is a network with 5 sites arranged in a line, where each site
influences its neighbor and itself, that is, cij = 1 if |i − j| ≤ 1, and cij = 0 otherwise.
It turns out that the limiting stationary distribution assigns a probability of 1/2 to
each of the two homogeneous states, which we can picture as

w w w w w and f f f f f

These states require a noise of at least 2 to change. If we choose a noise level
and time period so that we are likely to see many occurrences of noise 1 but no
occurrences of noise 2, then the system will end up in one of the two homogeneous
states with probability depending on the initial state. If we choose a noise level
and time period so that we are unlikely to see any occurrences of noise 1, and we
start in a stable state like

w w f f f or f f w w w

which require a noise of at least 1 to change, then the network will typically stay
in that state during that time period. Note that the unstable state

f f w w f

will quickly switch to

f f w w w

The possibility of choosing such noise levels and time periods depends on the density

function f . For the normal density
1

√

2π
e−x2/2 we can do it, but for the Cauchy

density π/
(
1 + x2

)
we cannot.

2. TRANSIENT LIMITS

Let An(σ) be a family of sequences in a metric space, (S, d), indexed by
σ ∈ R+. A window is a pair of real-valued functions 1 ≤ u (σ) ≤ v (σ) such that
lim
σ→0

u/v = 0. We say that L is a transient limit of An(σ) if there is a window

u ≤ v such that
lim
σ→0

sup
u≤n≤v

d
(
An(σ), L

)
= 0.
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Note that we need only consider small σ in R
+ because our interest is in what

happens as σ goes to zero.

The idea here is that, for small values of σ, the sequence An (σ) is very close
to L for a long time, and this approximation gets better, and the time gets longer,
as σ gets smaller. That’s the sense in which L is a limit of the sequence. The limit
is transient in that, for any given σ, the sequence An (σ) might eventually get far
away from L.

As a simple example, consider An (σ) = (1 − σ)n. The transient limits of
An (σ) are 0 and 1. For 0 we can take the window u = 1/σ2 and v = 1/σ3. Zero,
of course, is the actual limit of An (σ) for each σ < 1. For the transient limit 1,
which is truly transient, we can take the window u = 1 and v = 1/

√
σ.

In the example of Section 1, An (σ) is the Markov matrix An (σ). This
sequence converges for small σ to a matrix each of whose rows is a distribution
which is approximately 1/2 on each of the two states 11111 and 00000. However, for
a long period of time, each row of An (σ) contains an entry which is approximately
equal to 1 for one of the states 11111, 00000, 11000, 11100, 00111, or 00011.

Theorem 1. Suppose the limit A∞(σ) = lim
n→+∞

An(σ) exists for each sufficiently

small σ in R
+. If lim

σ→0
A∞(σ) exists, then it is a transient limit of An (σ).

Proof. Choose u ≥ 1 so that sup
u≤n

d

(
An(σ), lim

n→+∞
An(σ)

)
< σ and let v = u/σ.

�

The limit lim
σ→0

A∞(σ) is called the ultimate limit of the sequence An(σ).

The term “transient limit” is a bit of a misnomer in this case, but it is convenient
to include the ultimate limit under this heading.

Consider the indexed Markov matrix

A (σ) =




1 − σ σ 0

0 1 − σ2 σ2

0 0 1



 .

We will show that the powers of A (σ) form a sequence with exactly three
transient limits (including the ultimate limit), namely,




1 0 0
0 1 0
0 0 1








0 1 0
0 1 0
0 0 1








0 0 1
0 0 1
0 0 1



 .

To this end, we will look at a more general chain with states 1, 2, . . . , m, and positive
transition probabilities only from i to i and from i to i+1, such that the probability
of going from i to i + 1 decreases rapidly with i.

Lemma 2. Let A be an m-by-m Markov matrix, p, q ∈ [0, 1], and k ≤ m. Suppose

• ajj + aj,j+1 = 1 for each j < m, and amm = 1,
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• ak,k+1 = q if k < m,

• ai,i+1 ≥ p for each i < k.

Then for each ε > 0 there exists δ > 0, depending only on ε and k, such that

if np > 1/δ and nq < δ, then
∣∣∣a(n)

ik − 1
∣∣∣ < ε for each i ≤ k.

If , in addition, ai,i+1 ≤ q for each i > k, then
∣∣∣a(n)

ii − 1
∣∣∣ < ε for each i > k.

Proof. Let Xn be the state that the Markov chain is in after n steps. We will

show that Pi(Xn ≥ k) =
∑
j≥k

a
(n)
ij is within ε/2 of 1 if np > 1/δ. (Note that

Pi(Xn ≥ k) = 1 for i ≥ k.) We will also show that if i ≤ k, then Pi(Xn ≤ k) is

within ε/2 of 1 if nq < δ. Hence if i ≤ k, then Pi(Xn = k) = a
(n)
ik is within ε of 1

if np > 1/δ and nq < δ. We will also indicate how to choose δ.

First note that Pi(Xn ≥ k) =
∑
j≥k

a
(n)
ij is an increasing function of the prob-

abilities at,t+1 for t < k, so by taking all those probabilities equal to p, we get a

lower bound on
∑
j≥k

a
(n)
ij , namely

n∑

u=k−i

(
n
u

)
pu(1 − p)n−u.

To show that this is within ε/2 of 1 if np > 1/δ, it suffices to show that

(
n
u

)
pu(1 − p)n−u <

ε

2k

for each u < k − i. But

(n
u

)
pu(1 − p)n−u ≤ (np)u

u! (1 − p)u
(1 − p)n

and

log(np)u(1 − p)n = u log(np) + n log(1 − p) ≤ k log(np) − np

and this will be less than log ε − log(2k) if np > 1/δ for a suitable choice of δ,
depending only on ε and k.

On the other hand, if i ≤ k, then Pi(Xn ≤ k) ≥ Pk(Xn = k) = (1− q)n. But

(1 − q)n = (1 − q)(1/q)nq

and we can make (1 − q)1/q arbitrarily close to 1/ε by requiring nq, hence q, to
be sufficiently small. So (1 − q)n can be made arbitrarily close to (1/e)0 = 1 by
requiring nq to be sufficiently small. Pick δ to meet this condition as well as the
condition of the preceding paragraph.
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Finally, if ai,i+1 ≤ q for i > k, then (1− q)n is also a lower bound for a
(n)
ii for

any i > k. �

Theorem 3. Consider the indexed m-by-m Markov matrix, whose entries depend
on σ,

A(σ) =





1 − s1 s1 0 · · · 0 0
0 1 − s2 s2 · · · 0 0
0 0 1 − s3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 − sm−1 sm−1

0 0 0 · · · 0 1





,

where s0 = 1, sk > 0, and sk/sk−1 → 0, as σ → 0, for k = 1, . . . , m − 1. For
k = 1, . . . , m, let Lk be the Markov matrix such that (Lk)ik = 1 for i ≤ k and
(Lk)ii = 1 for i > k. Then Lk is a transient limit of An(σ). Indeed, if we set
τk = 1/sk for k = 0, . . . , m, and τm+1 = ∞, then for each θ ∈ (0, 1/2) and
k = 0, . . . , m we have

lim
σ→0

sup
{
d (An(σ), Lk) : (τk−1)

1−θ
(τk)

θ
< n < (τk−1)

θ
(τk)

1−θ
}

= 0.

Proof. Setting u = (τk−1)
1−θ

(τk)
θ

and v = (τk−1)
θ
(τk)

1−θ
gives a window

because u/v = (sk/sk−1)
1−2θ → 0. Given ε > 0 choose δ > 0 as in Lemma 2.

Set p = sk−1 and q = sk so u = pθ−1q−θ and v = p−θqθ−1. If u ≤ n ≤ v, then

for sufficiently small values of σ we have nq ≤ vq = (q/p)
θ ≤ δ and np ≥ up =

(p/q)θ ≥ 1/δ. The result follows from Lemma 2. �

The displayed limit in Theorem 3 continues to hold if the τk are replaced by
τ ′
k such that τk/τ ′

k is bounded and bounded away from zero. The τk are cutoffs,
analogous to the cutoff phenomenon described in [1]. The parameter corresponding
to σ in [1] is a discrete parameter m, the size of the square matrix A. In our situation
we get multiple cutoffs rather than just a single cutoff.

The cutoffs for the example are τ1 = 1/σ and τ2 = 1/σ2. To get a picture

of what these transient limits are like, we give above the graphs of a
(n)
11 , a

(n)
12 , a

(n)
13 ,
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the distribution on the states at time n if you start in state 1, versus log2 n for
σ = 10−3 and σ = 10−7.

For σ = 10−3, the cutoffs are at log2 103 = 9.97 and log2 106 = 19.93. For
σ = 10−7, the cutoffs are at log2 107 = 23.25 and log2 1014 = 46.51.

3. TIME SCALES AND SUITABLE DENSITY FUNCTIONS

An indexed probability is a function δ (σ), defined on some nonempty in-
terval (0, r], that is either identically 0 or strictly positive, and has a limit as σ
goes to 0. In the motivating example, the entries of the transition matrix A (σ)
are indexed probabilities. Normally we are interested in functions mapping into
[0, 1], hence the term probability, but it is convenient to allow the broader defini-
tion because it is closed under addition. We will not need to distinguish indexed
probabilities that agree on some nonempty interval of the form (0, r] in the inter-
section of their domains, so we will not keep track of what those domains are, for
example, when the functions are added or multiplied. An indexed probability δ(σ)
can be thought of as a perturbed probability: the base probability is lim

σ→0
δ(σ) and

the small quantity σ causes a perturbation.

Preorder the indexed probabilities by setting δ � γ if δ = γ = 0, or if γ 6= 0
and limσ→0 δ(σ)/γ (σ) exists. This is the time-scale preorder. Write δ ≺ γ if
γ 6= 0 and lim

σ→0
δ(σ)/γ (σ) = 0. Note that if δ � γ , then either γ � δ or δ ≺ γ .

The preorder gives rise to an equivalence relation δ ≈ γ defined by requiring both
δ � γ and γ � δ. An equivalence class of indexed probabilities determines a time

scale: we think of the reciprocal of an indexed probability as a time scale because
1/p is roughly how long you have to wait to see an event that has probability p.
Longer time scales thus correspond to smaller probabilities. Occasionally we are
interested in the finer order given by setting δ ≤ γ if δ = γ = 0, or if γ 6= 0 and
lim
σ→0

δ(σ)/γ (σ) exists and is at most 1. We write the corresponding equivalence

relation as δ ≡ γ if we wish to emphasize that it is not equality of functions but
rather asymptotic equality. Note that δ ≈ γ if and only δ ≡ aγ for some positive
number a.

An indexed Markov chain M is a family Mσ of Markov chains indexed
by the interval (0, 1]. The entries in the transition matrix A of M are indexed
probabilities. We consider indexed Markov chains for which the set Π of all
products of entries of A, together with 0 and 1, is linearly preordered under δ � γ,
hence also preordered under δ ≤ γ. Call such an indexed Markov chain suitable.
Note that if δ � γ, then δ + γ ≈ γ, so Π is closed under addition (up to time-scale
equivalence). In computing with a suitable indexed Markov chain, we need to
deal with conditional probabilities of the form δ/γ where δ, γ are in Π and δ � γ.
These are also indexed probabilities and the set Π∗ of such quotients is still linearly
preordered. Note that Π ⊂ Π∗.

The probabilities that occur in the networks of [2] are products of probabilities
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of the form

[r](σ) =

+∞∫

r

1

σ
f
(x

σ

)
dx =

+∞∫

r/σ

f (y) dy,

where f is a fixed symmetric density function (typically everywhere positive). As we
are interested only in the values of [r] for small σ, we care only about the behavior
of f near +∞. Indeed, the asymptotic behavior of f determines [r] up to time-scale
equivalence. More precisely, if lim

x→+∞
f(x)/g(x) = a, then lim

σ→0
[r]f (σ)/[r]g(σ) = a.

To see this, choose σ so that |f(x)/g(x) − a| ≤ ε for x ≥ r/σ. Then

∣∣∣∣
[r]f (σ)

[r]g(σ)
− a

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

+∞∫

r/σ

(f (y) − ag(y)) dy

+∞∫

r/σ

g (y) dy

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

+∞∫

r/σ

g(y)
(

f(y)

g(y)
− a

)
dy

+∞∫

r/σ

g (y) dy

∣∣∣∣∣∣∣∣∣∣

≤ ε.

So if lim
x→+∞

f(x)/g(x) = a, then f and g give rise to the same bracket space, that

is, the space of products of indexed probabilities of the form [r], up to time scale
equivalence. Moreover, scaling does not affect the bracket space: if lim

x→+∞
g(x) =

f(λx), then

[r]g ≡ 1

λ
[λr]f

so g and f give rise to the same bracket space.

Most common density functions f give rise to a bracket space in which all
elements are comparable, hence to a suitable Markov chain. For example, any
integrable rational function with positive coefficients, like the Cauchy density
function, any exponential power density function, like the Laplace and normal
density functions, the logistic density function, and so on. Basically, this is because

density functions that are asymptotic to x−p for p > 1, or to ex−b

for b ≥ 1, give
rise to bracket spaces in which all elements are comparable. Notice if we combine
all the brackets from these two given families of density functions, then all the
elements in the resulting space are comparable.

In [2] it is shown that any suitable Markov chain has a limiting stationary
distribution. To see that some such suitability condition is needed, consider the
transition matrix

A (σ) =

(
1 − s1 s1

s2 1 − s2

)
,

where, for σ small, s1 = e−1/σ and s2 =
(
1 + sin2(1/σ)

)
e−1/σ. The stationary

distribution of A (σ) is

(
s2

s1 + s2
,

s1

s1 + s2

)
=

(
1 + sin2(1/σ)

2 + sin2(1/σ)
,

1

2 + sin2(1/σ)

)
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which does not approach a limit as σ goes to 0. The problem is that s1 and s2 are
not comparable in the time-scale order.

Only a finite number of time scales are critical for the behavior of a suitable
indexed Markov chain. These are the time scales that appear in the running of
the algorithm of [2] as the largest off-diagonal terms in the reduced matrix (after
some invisible states are eliminated, and some sets of states are combined into
mixed states). The windows between these critical time scales (cutoffs) give rise to
distinct transient limits.

We can cook up a density function with incomparable brackets. For this
purpose, it is convenient to to prove the following theorem.

Theorem 3. Let a1, a2, . . . be a sequence of positive real numbers. Then there
exists a continuous, integrable, monotone decreasing, positive function f such that,
for each i, i+1∫

i

f (x) dx = ai

if and only if

1. ai ≥ ai+1 for all i, 2.
+∞∑
i=1

ai converges,

3. for no i does it hold that ai = ai+1 > ai+2 = ai+3.

Proof. Let f be such a function. As f is monotone decreasing, (1) holds, and as
f is integrable, (2) holds. If ai = ai+1 > ai+2 = ai+3, then, because f is monotone
decreasing and continuous, f (x) = ai for i ≤ x ≤ i + 2 and f (x) = ai+2 for
i + 2 ≤ x ≤ i + 4. But then f would not be continuous at ai+2, so (3) must hold.

Conversely, suppose the sequence of positive numbers ai satisfies the three
conditions. Define f as follows. If ai = ai+1, then set f (i) = f (i + 1) = f (i + 2) =
ai. Note that we need (3) for this to be possible. For those i > 1 for which f (i)
is not yet defined, set f (i) = (ai−1 + ai) /2. Setting f (1) = 2a1 − f (2) we have
defined f on each positive integer. Note that in each case f (i) ≥ ai ≥ f (i + 1).
Now, for each i > 1 such that ai−1 > ai > ai+1, choose xi between i and i + 1 so
that

f (i) + ai

2
(xi − i) +

ai + f (i + 1)

2
(i + 1 − xi) = ai

and define f (xi) = ai. Finally, let f be the piecewise linear function determined
by these function values. �

Note that we can arrange for the f of the theorem to be infinitely differentiable
by replacing each linear piece by an infinitely differentiable function g which is
symmetric with respect to the midpoint of the segment and all of whose derivatives
are equal to zero at the endpoints. For example, we can choose g to be a function
of the form

g (x) = c

x∫

a

exp

( −1

(t − a) (b − t)

)
dt + d

on the interval (a, b).
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To construct an example of a density function with incomparable brackets,
let si be a sequence of positive numbers with si ≤ si+1 for i ≥ 2 and

lim
j→+∞

s1s2 · · · sj = 0.

Set
ai = s1s2 · · · si (1 − si+1) .

Note that
+∞∑
j=i

ai forms a collapsing sum adding up to s1s2 · · · si. It is not dif-

ficult to show that the sequence ai satisfies the conditions of the theorem. Consider
the particular sequence si given by

1, 2−1, 3−1/2, 3−1/2, 2−1/4, 2−1/4, 2−1/4, 2−1/4,

3−1/8, 3−1/8, 3−1/8, 3−1/8, 3−1/8, 3−1/8, 3−1/8, 3−1/8, . . .

Let f be the function constructed by the theorem. We want to show that the
brackets [1] and [2] associated with this density function are incomparable. So
consider the ratio

[2] (1/i)

[1] (1/i)
=

+∞∫

2i

f (x) dx

+∞∫

i

f (x) dx

= si+1si+2 · · · s2i

For i = 1 the ratio is s2 = 1/2, for i = 2 it is s3s4 = 1/3, for i = 4 it is
s5s6s7s8 = 1/2, for i = 8 it is s9s10 · · · s16 = 1/3 and so on. So the ratio does not
converge as i goes to infinity.

4. CESARO SUMS

The powers of an arbitrary Markov matrix A need not converge because A

need not be aperiodic. However, the Cesaro sums

Cn =
1 + A + · · · + An−1

n

smooth out any periodicity and always converge to a matrix whose rows are the
stationary distributions of A. The simplest example of this phenomenon occurs
when

A =

(
0 1
1 0

)
.

To see this phenomenon play out with transient limits, consider the two
indexed Markov matrices

(
1 − σ σ

σ 1 − σ

)
and

(
σ 1 − σ

1 − σ σ

)
.
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Each sequence of powers has the ultimate limit

(
1/2 1/2
1/2 1/2

)
but the first also has

a transient limit

(
1 0
0 1

)
in the window between 1 and 1/σ. The second does not

have a transient limit in that window. However, if we take the sequence of Cesaro

sums of the powers, then the second matrix has the ultimate limit as the transient
limit in the window between 1 and 1/σ. This example illustrates why you want to
use Cesaro sums for computing the transient limits. Indeed, the algorithm of [2]
computes the cutoffs for the transient limits of the Cesaro sums.

It is instructive to see exactly how the algorithm treats the second matrix.
It looks for the largest off-diagonal element, which is 1 − σ ≡ 1, then ignores

everything at larger time scales and considers the matrix

(
0 1
1 0

)
. From each

ergodic component of this matrix (only one in this case), it forms a mixed state
with internal probabilities the stationary distribution on that ergodic component.
When the mixed states are unpacked at the end, the original states are resurrected
using these probabilities. In the present case, the matrix immediately reduces to
one mixed state with internal probabilities equal to that of the ultimate limit, and
the time scale 1/σ never comes into play.

5. IDEMPOTENTS

We want to show that if A (σ) is an indexed family of m-by-m Markov

matrices, then the transient limits of An (σ) are commuting idempotent Markov

matrices and there are at most m of them. More generally, we want to show this
for the transient limits of the sequence of Cesaro sums

Cn(σ) =
1 + A (σ) + · · · + An−1 (σ)

n
.

That this is indeed a more general result is a consequence of the following theorem.

Theorem 5. Let A (σ) be an indexed family of elements of a normed ring such
that the set of powers An (σ) is bounded for each σ. If L is a transient limit of
An (σ) , then L is a transient limit of the Cesaro sums

Cn(σ) =
1 + A (σ) + · · · + An−1 (σ)

n
.

Proof. There is a window u ≤ v such that

lim
σ→0

sup
u≤n≤v

|An(σ) − L| = 0.

Let b be a bound on |An(σ) − L| and let

ε = sup
u≤n≤v

|An(σ) − L| .
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Then, for u ≤ n ≤ v,

|Cn(σ) − L| ≤ ub + (n − u)ε

n
≤ u

n
b + ε

so for
√

uv ≤ n ≤ v we have |Cn(σ) − L| ≤ b
√

u/v + ε which goes to zero with σ.
�

The set of powers An(σ) is clearly bounded for A (σ) a Markov matrix.

The set of Markov matrices is metrically closed, and is closed under taking
powers and averages, so if A (σ) is an indexed family of Markov matrices, then
any transient limit of the Cesaro sums of powers of A (σ) is a Markov matrix.
The proof that it is idempotent may be carried out in the context of a normed ring.

Theorem 6. Let L be a transient limit of the Cesaro sums

Cn (σ) =
1

n

n−1∑

i=0

Ai (σ) .

in a normed ring. If the set {An (σ) : n ∈ N, σ ∈ R
+} is bounded, then L2 = L.

Proof. Let b be a bound on the powers An (σ). We will show that we can ap-
proximate L arbitrarily closely by elements U , V and UV that are bounded by b.
Then

L2 − L = L (L − U) + (L − V )U − (L − UV )

shows that L is idempotent.

Because L is a transient limit of the matrices Cn (σ), for each ε > 0 we can
choose σ and n so that Cn, . . . , C3n are within ε of L. Note that for all i

AiCn =
n + i

n
Cn+i −

i

n
Ci

so

AiCn − L =
n + i

n
(Cn+i − L) − i

n
(Ci − L) .

Thus, for n ≤ i < 2n, each AiCn is within 4ε of L. So their average

1

n

2n−1∑

i=n

AiCn = AnCnCn

is within 4ε of L. Set U = AnCn and V = Cn. Then U is within 4ε of L, V is
within ε of L, and UV is within 4ε of L. �

Again, if A (σ) is a Markov matrix, the boundedness condition is automatic.
Finally, we show that the transient limits of the Cesaro sums commute and are
comparable.

Theorem 7. Let A(σ) be an indexed family in a normed ring, and L and M be
transient limits of the Cesaro sums Cn (σ). If the powers of A (σ) are uniformly
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bounded in n and σ, then L and M are commuting idempotent matrices, and either
LM = L or LM = M .

Proof. We know that L and M are idempotent by Theorem 6. There exist windows
uL ≤ vL and uM ≤ vM such that

lim
σ→0

sup
uL≤n≤vL

|Cn(σ) − L| = 0,

lim
σ→0

sup
uM≤n≤vM

|Cn(σ) − M | = 0.

If these two windows overlap for arbitrarily small values of σ, then L = M . Other-
wise vL ≤ uM +1, say, for arbitrarily small σ. Choose such σ so that also vM ≥ 2uM

and vL − uL ≥ 1. Choose j = duLe and n = duMe. Then uL ≤ j ≤ vL and
uM ≤ n ≤ n + j ≤ vM and j/n = η can be made as small as we please.

Let b be a bound on the powers of A, hence on the Cesaro sums Ck and on
L and M . We need bη to be small. The basic identity for Cesaro sums is

AiCn =
n + i

n
Cn+i −

i

n
Ci

so, for i ≤ j,

∣∣AiCn − M
∣∣ ≤ n + i

n
|Cn+i − M | + 2bi

n
≤ (1 + η) ε + 2bη.

From this we get, by averaging, that |CjCn − M | ≤ (1 + η) ε + 2bη. Thus we can
approximate L by Cj and M by CjCn and Cn. �

There are at most m distinct m-by-m mutually commuting idempotent Markov

matrices with the property that for any two matrices L and M , either LM = L or
LM = M . Indeed, such matrices represent projections onto a chain of subspaces of
an m-dimensional vector space, and because we are dealing with Markov matrices,
the projections are nonzero.
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