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SOME SOLVABILITY THEOREMS FOR NONLINEAR

EQUATIONS WITH APPLICATIONS TO PROJECTED

DYNAMICAL SYSTEMS

G. Isac

Dedicated to the Memory of Professor D. S. Mitrinović (1908–1995)

We present in this paper some solvability results with applications to the
study of existence of periodic orbits for projected dynamical systems.

1. INTRODUCTION

The study of solvability of nonlinear equations defined in topological vector
spaces is a fundamental problem considered in Nonlinear Analysis. This problem
is so important because it is related to the study of solvability of differential or
integral equations.

The literature related to this subject is huge. See [1]–[4], [7], [10], [11], [17],
[23]–[25] among the other papers and books published until now. The solvability of
nonlinear equations has been studied by many authors using several kinds of math-
ematical tools and related to this problem several chapters of Nonlinear Analysis
have been created as for example, the fixed point theory, the theory of monotone
operators, the theory of accretive operators, the theory of normal solvable oper-
ator, etc. Several solvability theorems have been obtained using as assumptions
the monotonicity [17], [19], [24], [25] or some geometrical assumptions, [1], or
topological degrees.

We present in this paper some simple solvability theorems applicable to the
study of some problems considered in the theory of projected dynamical systems [5],
[6], [8], [16], [21], [22]. The theory of projected dynamical systems is a new chapter
in the theory of dynamical systems. In our solvability results some inequalities are
essential. The inequalities are so important in mathematics [20].
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We note that, we will give an answer to an open subject related to projected
dynamical systems [6]. This open subject motivated us to write this paper. To the
end we will add some comments.

2. PRELIMINARIES

The notions and the notations given in this section are necessary for this
paper. We denote by (E, ‖ · ‖) a Banach space and by (E, 〈· , ·〉) a Hilbert space.
Let (E, ‖·‖) be a Banach space. The open ball of radius r > 0 centered at the
origin defined by the norm ‖ · ‖ is the set

Br = {x ∈ E
∣∣‖x‖ < r}.

The closure of Br is Br = {x ∈ E
∣∣‖x‖ 6 r} and the sphere of radius r

centered at the origin is Sr = {x ∈ E
∣∣‖x‖ = r}.

A semi-inner-product on E is a mapping satisfying the following properties:

(s1) [x + y, z]` = [x, z]` + [y, z]` , for all x, y, z ∈ E,

(s2) [λx, y]` = λ[x, y]` , for all λ ∈ R and x, y ∈ E,

(s3) [x, x]` > 0 , for all x ∈ E, x 6= 0,

(s4) |[x, y]`| 6 [x, x]` · [y, y]` , for all x, y ∈ E.

It is known [18] that the mapping x → [x, x]1/2 for any x ∈ E is a norm on
E. We denote this norm by ‖ · ‖s. If ‖x‖2

s = ‖x‖2 for any x ∈ E, we say that the
semi-inner-product is subordinated to the norm ‖ · ‖ given on E. The notion of
semi-inner-product is due to G. Lumer [18].

It is known that on any Banach space it is possible to define a semi-inner-
product. For more information about semi-inner-products the reader is referred to
[9] and [18]. We note that on an arbitrary Banach space (E, ‖ · ‖), it is possible
to define another kind of semi-inner-product which has no all the properties of the
semi-inner-product in Lumer’s sense, but which is useful. This is the semi-inner-
product in Deimling’s sense [7], that is,

[x, y]d = ‖y‖ · lim
t→0+

‖y + tx‖ − ‖y‖

t
, for all x, y ∈ E.

About this semi-inner-product we note the following two properties (consequences
of the definition):

(d1) [λx, y]d = λ[x, y]d , for any x, y ∈ E and λ ∈ R, λ > 0,

(d2) [x, x]d > 0, for any x ∈ E, x 6= 0.

Let (E, ‖ · ‖) be a Banach space and X ⊂ E a non-empty subset. We say
that a mapping f : X → E is compact if it is continuous and f(X) is relatively
compact in E, (i.e.,f(X) is compact, where f(X) is the topological closure of f(x)).

We say that a mapping f : E → E is completely continuous if f is continuous
and for any bounded subset D ⊂ E, we have that f(D) is compact.
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Let (E, 〈· , ·〉) be a Hilbert space and Ω ⊂ E a non-empty closed convex set.

Recall that for each x ∈ Ω the set TΩ =
⋃

λ>0
1
λ(Ω − x) is the tangent cone to Ω

at the point x.

Also we recall that for any x ∈ E, there exists a unique element in Ω, denoted
by PΩ(x) such that ‖PΩ(x) − y‖ = infy∈Ω ‖x − y‖. This defines a mapping PΩ :
E → Ω given by x → PΩ(x), called the projection operator of the space E onto the
subset Ω. The properties of the projection operator on Hilbert spaces are well
known. It is known [5], [6], [21] that for any x ∈ Ω and any element v ∈ E the
limit

ΠΩ(x; v) := lim
δ→0+

PΩ(x + δv) − x

δ

exists and ΠΩ(x; v) := PTΩ(x)(v). The mapping ΠΩ(x; v) := Ω × E → E, generally
is discontinuous of the boundary of Ω [21], [6].

3. SOME SOLVABILITY THEOREMS

First, we need to recall the following classical result:

Theorem 1 (Schauder). Let D be a convex (not necessarily closed) subset of a
normed vector space (E, ‖ · ‖). Then each compact mapping f : D → D has at least
one fixed point.

The original proof of Theorem1 is in [21], but the reader is referred also to
[10].

Let (E, ‖ · ‖) be an arbitrary Banach space, r > 0 and f : E → E a
completely continuous mapping. We consider in Br the equation

(1) f(x) = 0.

Definition 1. [13] We say that equation (1) is almost solvable in Br if 0 ∈ f(Br)

Obviously, in the n-dimensional Euclidean space (Rn, 〈·, ·〉) the almost solv-
ability implies the solvability, because the set Br is a compact set. Our goal in this
section is to study the almost solvability and also the solvability of equation (1).

Suppose given a mapping G : E × E → R satisfying for some r > 0 the
following conditions:

(g1) G(x, x) ≥ 0 , for all x ∈ Sr,

(g2) G(λx, x) ≥ λG(x, x) , for all x ∈ Sr and λ > 0, λ ∈ R.

Examples

1. If (E, 〈· , ·〉) is a Hilbert space, then in this case we can take G (· , ·) = 〈· , ·〉
where 〈· , ·〉 is the inner-product defined on E.

2. If (E, ‖ · ‖) is an arbitrary Banach space, we can take G (· , ·) = [· , ·]` , where
[· , ·]` is a semi-inner-product in Lumer’s sense defined on E, or G (· , ·) = [· , ·]d ,
where [· , ·]d is a semi-inner-product in Deimling’s sense.
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3. Let (H, 〈· , ·〉) be a Hilbert space and E = C([0, 1], H) the vector space of
continuous functions from [0, 1] into H . Consider on E = C([0, 1], H) the norm
‖x‖ = supt∈[0,1] ‖x(t)‖H , where ‖ · ‖H is the norm of the space H . Then in this
case we may take:

G(x, y) = supt∈[0,1] 〈x(t), y(t)〉 , or G(x, y) =

∫ 1

0

〈x(t), y(t)〉 dt.

The following result is an almost solvability test.

Theorem 2. Let (E, ‖ · ‖) be a Banach space and f : E → E a completely
continuous mapping. Suppose given a mapping G : E × E → R. If there exists
r > 0 such that the following assumptions are satisfied :

(1) G satisfies properties (g1) and (g1) with respect to Sr,

(2) G(f(x), x) < G(x, x) for any x ∈ Sr,

(3) ‖f(x)‖ ≥ r, for any x ∈ Sr,

then the equation f(x) = 0 is almost solvable in Br.

Proof. If there is an element x0 ∈ Br such that f(x) = 0, then the equation
f(x) = 0 is solvable and consequently it is almost solvable. Suppose that 0 /∈ f(Br).

In this case we will show that 0 ∈ f(Br). Indeed, we suppose that 0 /∈ f(Br). In
this case we consider the mapping

F (x) =
r

‖f(x)‖
f(x), x ∈ Br.

The mapping F : Br → E is well defined and continuous. Obviously, we have
the inclusions F (Br) ⊂ Sr ⊂ Br. Now we show that F (Br) is a relatively compact
set. Indeed, let {un}n∈N be a sequence in F (Br). Then, for any n ∈ N we have
that un = F (xn), with xn ∈ Br, that is we have

un =
r

‖f(xn)‖
f(xn), for all n ∈ N.

Since f(Br) is relatively compact, we have that f(xn)n∈N
has a conver-

gent subsequence {f(xnk
)}k∈N. We denote z = limk→∞ f(xnk

) and we have that

z ∈ f(Br). To show that {unk
}k∈N is convergent, we must show that z 6= 0, which

is true, since we suppose that 0 /∈ f(Br).

Therefore, applying the Schauder Fixed Point Theorem, we obtain the ex-
istence of a point x∗ ∈ Br such that F (x∗) = x∗. Moreover, we have x∗ ∈ Sr.
Considering our assumptions we have

G(x∗, x∗) > G(f(x∗), x∗) = G

(
‖f(x∗)‖

r
x∗, x∗

)
≥

f(x∗)

r
G(x∗, x∗) ≥ G(x∗, x∗)

which is a contradition.
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Hence, we must have 0 ∈ f(Br), and the proof is complete. 2

Corollary 1. Let (E, ‖ · ‖) be a Banach space and f : E → E a completely
continuous mapping. Suppose given a mapping G : E ×E → R. If there exist r > 0
and c ≥ 0 such that :

(1) G satisfies properties (g1) and (g2) with respect to Sr,

(2) G(x, x) ≥ c, for any x ∈ Sr,

(3) G(f(x), x) < c, for any x ∈ Sr,

(4) ‖f(x)‖ ≥ r, for any x ∈ Sr,

then the equation f(x) = 0 is almost solvable in Br.

Corollary 2. Let (E, ‖ · ‖) be a Banach space and f : E → E a completely
continuous mapping. If there exist r > 0 and a mapping G : E ×E → R such that :

(1) G satisfies properties (g1) and (g2) with respect to Sr,

(2) G(f(x), x) < 0, for any x ∈ Sr,

then the equation f(x) = 0 is almost solvable in Br.

Proof. We remark that in this case assumption (3) of Theorem 2 is not necessary.
2

Corollary 3. Let (E, ‖ · ‖) be a Banach space and h : E → E a completely
continuous mapping. Suppose given a mapping G : E × E → R. If there exists
r > 0 such that :

(1) G satisfies property (g1) for all x ∈ Sr,

(2) G(λx, x) = λG(x, x), for all x ∈ Sr, and all λ ∈ R,

(3) G(h(x), x) > 0, for all x ∈ Sr,

then the equation h(x) = 0 is almost solvable in Br.

Proof. We apply Corollary 2 taking f(x) = −h(x) for any x ∈ E and we observe

that 0 /∈ (−h)(Br) implies 0 /∈ h(Br). 2

The next result is a solvability test.

Let (E, ‖·‖) be a Banach space, E∗ the topological dual of E and let 〈E, E∗〉
be a duality (pairing) between E and E∗. We recall some notions, well known in
Nonlinear Analysis, [3] and [4].

We say that f : E → E∗ satisfies condition (S)0 if any sequence {xn}n∈N ⊂
E, weakly convergent to an element x∗ ∈ E and such that {f(xn)}n∈N is weakly-
(∗)-convergent to an element u ∈ E∗ with limn→∞ 〈xn, f(xn)〉 = 〈x∗, u〉 , has a
subsequence {xnk

} convergent in norm to x∗.

We introduced in [15] the following condition.

We say that f : E → E∗ satisfies condition (S)1+ if any sequence {xn}n∈N ⊂
E, weakly convergent to an element x∗ ∈ E and such that {f(xn)}n∈N is weakly-
(∗)-convergent to an element u ∈ E∗ and limn→∞ 〈xn, f(xn)〉 ≤ 〈x∗, u〉 has a
subsequence {xnk

}k∈N convergent in norm to x∗.
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Obviously, if f satisfies condition (S)1+ then f satisfies condition (S)0. We
note that condition (S)+ defined in [3] and [4] implies condition (S)1+ and hence
condition (S)0. Examples of mappings satisfying conditions (S)0, (S)+ and (S)1+
are given in [2]–[4], [15].

Now, we consider a Hilbert space (H, 〈· , ·〉). In this case we take G (· , ·)
= 〈· , ·〉.

Theorem 3. Let (H, 〈· , ·〉) be a separable Hilbert space and f : H → H a contin-
uous mapping. Let b ∈ H be an arbitrary element. If there exists r > 0 such that
the following assumptions are satisfied :

(1) f is bounded,

(2) f satisfies condition (S)0,

(3) 〈F (x), x〉 > 〈b, x〉 for any x ∈ H with ‖x‖ = r,

then there exists x∗ such that f(x∗) = b and ‖x∗‖ ≤ r.

Proof. Because H is separable, there exists a sequence {v1, v2, . . . , vm, . . .} of
elements in H such that the linear subspace generated by this sequence is dense
in H. We can suppose that {v1, v2, . . . , vm, . . .} is linearly independent. Let Hm

denote the linear subspace generated by {v1, v2, . . . , vm}, for each m > 1. We
denote by jm : R

m → Hm the linear mapping defined by the representation with
respect to this basis.

Denote by 〈· , ·〉 the inner-product on R
m defined by

〈x, y〉 = 〈jm(x), jm(y)〉

We denote by H∗ the topological dual of H (which is obviously isomorph to
H) and consider f as a mapping from H into H∗. Because Hm ⊂ H , consider
jm : R

m → Hm ⊂ H and denote by j∗m the adjoint mapping of jm. We have
j∗m : H∗ → R

m. Fix m > 1 and consider the problem:

(2)






find um ∈ Hm such that

〈f(um), vk〉 = 〈b, vk〉

1 6 k 6 m.

We have that an element um ∈ Hm is a solution to problem (2) if um =
jm(ûm), where ûm ∈ R

m, is such that

(3) F (ûm) ≡ (j∗m ◦ f ◦ jm)(ûm) − j∗m(b) = 0,

Indeed, if vk = jm(v̂k), then we have

〈(j∗m ◦ f ◦ jm)(ûm), v̂k〉 = 〈j∗m(b), v̂k〉

which implies
〈f(um), vk〉 = 〈b, vk〉 ; k = 1, 2, · · · , m,
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that is um solves (2).

We must show that for any m > 1 the mapping F : R
m → R

m has a zero
ûm. For m > 1 fixed, the mapping F : R

m → R
m is continuous and hence

completely continuous and 〈F (u), u〉 > 0 for any u ∈ R
m with ‖u‖ = r, because

‖jm(u)‖ = ‖u‖ = r and

〈F (u), u〉 = 〈j∗m ◦ f ◦ jm(u) − j∗m(b), u〉 = 〈f(jm(u)), jm(u)〉 − 〈b, jm(u)〉 > 0.

Applying Corollary 3 of Theorem 2 we have that the equation F (u) = 0 is solvable,
that is there exists ûm ∈ R

m such that F (ûm) = 0 and ‖ûm‖ = ‖jm(ûm)‖ 6 r.
Then we have 〈F (ûm), ûm〉 = 0, which implies 〈j∗m ◦ f ◦ jm(u) − j∗m(b), ûm〉 = 0,
that is 〈f(um), um〉 = 〈b, um〉, where um = jm(ûm) and ‖um‖ 6 r. Hence for any
m > 1 there exists um ∈ H with ‖um‖ 6 r and

(4) 〈f(um), um〉 = 〈b, um〉 ,

The sequence {um}m∈N is bounded, then there exists a subsequence of
{um}m∈N, denoted again by {um}m∈N which is weakly convergent to an element
x∗. Because the mapping f is bounded we have that the sequence {f(um)}m∈N has
a subsequence, denoted again by {f(um)}m∈N, which is weakly convergent to an
element z ∈ H .

Considering relation (2) we have that for any m > k 〈f(um), vk〉 = 〈b, vk〉.
Computing the limit when m → +∞ we obtain 〈z, vk〉 = 〈b, vk〉, for any k, and
because H is separable we deduce that z = b and consequently {f(um)}m∈N is
weakly convergent to b. From (4) we have that

lim
m→∞

〈f(um), um〉 = lim
m→∞

〈b, um〉 = 〈b, x∗〉

Applying condition (S)0 we have that {um}m∈N has a subsequence {uni
}i∈N

convergent in norm to x∗, and because f is continuous we have that limi→∞ f(uni
) =

b, that is f(x∗) = b, and the proof is complete. 2

4. APPLICATION TO PROJECTED DYNAMICAL SYSTEMS

In this section we present some applications to the study of existence of
periodic orbits for projected dynamical systems. Our applications are related to
the results presented in [6].

Let (H, 〈· , ·〉) be a separate Hilbert space and Ω ⊂ H a non-empty closed
convex subset. Let AC([0, +∞], Ω) denote the class of absolutely continuous func-
tions from [0, +∞] into Ω. Let F : Ω → H be a mapping and x0 ∈ H . It is known
[6] that the initial value problem

(5)






dx(t)

dt
= ΠΩ(x(t) − F (x)),

x(0) = x0
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has a unique solution in AC([0, +∞], Ω) if F is a Lipschitzian continuous mapping.

We recall that a projected dynamical system (PDS) is given by a mapping
φ : R+ × Ω → Ω which solves the initial value problem:

(6)

{
φ

′

(t, x) = ΠΩ(φ(t, x) − F (φ(t, x))),

φ(0, x) = x ∈ Ω.

If we denote by x(t) := φ(t, x) we define a mapping from Ω into AC([0, +∞], Ω)
by x → x(t) = φ(t, x). If T ∈ [0, +∞] is given, we define the mapping QT : Ω → H
by

x → QT (x) = x(T ) = x +

∫ T

0

ΠΩ(x(s) − F (x(s))) ds.

The problem of finding a periodic orbit of the PDS is equivalent to the prob-

lem of finding a fixed point of QT , or of a zero of the mapping x →
∫ T

0
ΠΩ(x(s) −

F (x(s))) ds. We recall the following result proved by R. I. Kachurovskii in 1968
[17].

Theorem (Kachurovskii). Let (E, ‖ · ‖) be a reflexive Banach space and D ⊂ E
closed convex set, such that 0 ∈ int(D). If there exists r > 0 such that D ⊂ Br

and f : Br → E∗ is a monotone operator, such that the following assumptions are
satisfied :

(1) f is hemicontinuous (i.e. for any u, v ∈ Br the real function t → 〈f(u + tv), v〉
is continuous),

(2) 〈x, f(x)〉 > 0 for any x ∈ ∂D

then there exists at least one element x0 ∈ D such that f(x0) = 0.

Using Kachurovskii’s theorem we obtain the following more flexible variant
of Theorem 3.4 proved in [6].

Theorem 4. Let (H, 〈· , ·〉) be a Hilbert space and Ω ⊂ H a non-empty closed
convex set and f : Ω → H a monotone Lipschitz continuous mapping. Let r > 0 be
such that Br ⊂ Ω. Let D be an arbitrary closed convex set such that 0 ∈ int(D) and
D ⊂ Br. If there exists, T > 0 such that

〈
(IdΩ − QT )(x), x

〉
> 0 for any x ∈ ∂D,

then there exist x∗ ∈ D such that x∗(T ) = x∗, that is, the PDS has a periodic orbit.

Proof. Because we know [6] that under the assumptions of Theorem 4 the mapping
IdΩ − QT is continuous and monotone, we apply Kachurovskii’s Theorem and
the conclusion of theorem follows. 2

In the n-dimensional Euclidean space (Rn, 〈· , ·〉) it is not necessary to have
that the operator IdΩ − QT is monotone. Indeed, we have the following result.

Theorem 5. Let (Rn, 〈· , ·〉) be the n-dimensional Euclidean space Ω ⊂ Rn a non-
empty closed convex set with 0 ∈ int(Ω) and F : Ω → Rn a Lipschitz continuous
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mapping. If there exist r > 0 and T > 0 such that Br ⊂ Ω and
〈
(IdΩ − QT )(x), x

〉
>

0 for any x ∈ Rn with ‖x‖ = r, then there exists x∗ ∈ Br such that x∗(T ) = x∗,
i.e., the PDS has a periodic orbit.

Proof. We know [6] that the mapping IdΩ−QT is continuous and hence it is com-
pletely continuous (because (Rn, 〈· , ·〉) is finite dimensional). We apply Corollary
3 of Theorem 2, taking G (· , ·) = 〈· , ·〉 and the conclusion of theorem follows. 2

Remark. In [6] is defined the following open question: Do periodic cycles for PDS exist in

the absence of monotonicity conditions? From Theorem 5 we obtain the answer probably

yes in the finite dimensional case.

Now we consider the case of infinite dimensional Hilbert spaces. In this
case we consider the mapping Ψ : Ω → H defined by

Ψ(x) =

∫ T

0

ΠΩ(x(s); −F (x(s))) ds.

Definition 2. We say that the PDS defined by F on Ω with 0 ∈ int(Ω) has almost
periodic orbits if there exist r > 0 and T > 0 such that Br ⊂ Ω and for any ε > 0
there exists xε ∈ Br with ‖xε(T ) − xε‖ < ε.

Theorem 6. Let (H, 〈· , ·〉) be a Hilbert space and Ω ⊂ H a non-empty closed
convex set with 0 ∈ int(Ω). Let F : Ω → H be a Lipschitz continuous mapping. If
the following assumption are satisfied :

(i) there exist r > 0 and T > 0 such that

Br ⊆ Ω and 〈Ψ(x), x〉 > 0 for any x ∈ Sr,

(ii) the mapping Ψ is completely continuous,

then the PDS has almost periodic orbits.

Proof. We apply Corollary 3 of Theorem 2, taking G (· , ·) = 〈· , ·〉 and we obtain
that the equation Ψ(x) = 0 is almost solvable in Br, which implies the conclusion
of theorem. 2

In the case when the Hilbert space (H, 〈· , ·〉) is separable, we have the
following results.

Theorem 7. Let (H, 〈· , ·〉) be a Hilbert space and Ω ⊂ H a non-empty closed
convex set with 0 ∈ int(Ω). Let F : Ω → H be a Lipschitz continuous mapping.
Suppose that there exists r > 0 such that Br ⊆ Ω. If there exists T > 0 such that
the following assumptions are satisfied :

(i) the mapping Ψ is bounded,

(ii) the mapping Ψ satisfies condition (S)0,

(iii) 〈Ψ(x), x〉 > 0 for any x ∈ Sr,

then the PDS has almost periodic orbits.
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Proof. Because Ψ is continuous and because our assumptions, we can apply The-
orem 3 with b = 0 and we obtain that the equation Ψ(x) = 0 has a solution x∗ in
Br and the conclusion of theorem follows. 2

5. COMMENTS

We presented in this paper some general solvability theorems in sc Banach
spaces and we apply some of our results to the study of the existence of periodic
orbits for projected dynamical systems.

We did not studied under what conditions the mappings IdΩ − QT and Ψ
satisfy condition (S)0. We will study this problem in a future paper. We know that
the strong monotonicity implies condition (S)1+ and hence condition (S)0. Therefore
an interesting open subject is to study under what conditions the operators IdΩ−QT

and Ψ satisfy conditions (S)+, (S)1+ or (S)0.

Finally we note that the assumption 0 ∈ int(Ω) used in the results presented
above probably can be removed using some solvability theorems bases on some
geometrical conditions like the results presented in [1].

REFERENCES

1. H. Ben-El-Mechaiekh, G. Isac: Some geometric solvability theorems in topological

vector spaces. Bull. Korean Math. Soc., 34, No. 2 (1997), 273–285.
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