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OSCILLATION CRITERIA FOR CERTAIN THIRD

ORDER NONLINEAR DIFFERENCE EQUATIONS
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Some new criteria for the oscillation of all solutions of third order nonlinear
difference equations of the form

∆
(

a(n)(∆2
x(n))α)+ q(n)f(x[g(n)]) = 0

and
∆
(

a(n)(∆2
x(n))α) = q(n)f(x[g(n)]) + p(n)h(x[σ(n)])

with
∑

∞

a
−1/α(n) < ∞ are established.

1. INTRODUCTION

We will study the oscillatory behavior of solutions of the nonlinear third order
difference equations

(1.1) ∆
(

a(n)(∆2x(n))α
)

+ q(n)f(x[g(n)]) = 0

and

(1.2) ∆
(

a(n)(∆2x(n))α
)

= q(n)f(x[g(n)]) + p(n)h(x[σ(n)]),

where n ∈ N(n0) = {n0, n0 + 1, · · · }, n0 is a nonnegative integer, ∆ is the forward
difference operator ∆x(n) = x(n + 1) − x(n), and {a(n)}, {p(n)}, {q(n)}, {g(n)},
and {σ(n)} are sequences of real numbers.

The following conditions are always assumed to hold:
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(i) α is the ratio of two positive odd integers;

(ii) a(n) > 0 for n ∈ N(n0) and

(1.3)

∞
∑

n=n0

a−1/α(n) < ∞;

(iii) p(n), q(n) ≥ 0 for n ∈ N(n0);

(iv) g, σ : N(n0) → Z satisfy g(n) < n, σ(n) > n, ∆g(n) ≥ 0, and ∆σ(n) ≥ 0
for n ∈ N(n0), and lim

n→∞
g(n) = ∞;

(v) f, h ∈ C(R, R), xf(x) ≥ 0, xh(x) ≥ 0, f ′(x) ≥ 0, and h′(x) ≥ 0 for x 6= 0,

(1.4) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0,

and

(1.5) −h(−xy) ≥ h(xy) ≥ h(x)h(y) for xy > 0.

By a solution of equation (1, i), i = 1, 2, we mean a real sequence {x(n)}
defined on N(n0), which satisfies equation (1, i), i = 1, 2. A nontrivial solution of
equation (1, i), i = 1, 2, is said to be nonoscillatory if it is either eventually positive
or eventually negative, and it is oscillatory otherwise. Equation (1, i), i = 1, 2, is
said to be oscillatory if all its solutions are oscillatory.

The problem of determining the oscillation and nonoscillation of solutions
of difference equations with deviating arguments has been a very active area of
research in the last three decades. Much of the literature on the subject has been
concerned with equations of types (1.1) and (1.2) when α = 1, a(t) = 1, and/or
equations of different orders. For typical results concerning this case, we refer the
reader to [1–7, 10] and the references cited therein. There is however much current
interest in the study of the oscillatory behavior of equations (1.1) and (1.2) when
α 6= 1, and

∞
∑

n=n0≥0

a−1/α(n) = ∞;

see, for example, [1, 4–7]. The purpose of this paper is to establish some new
criteria for the oscillation of equations (1.1) and (1.2) when condition (1.3) holds.
The results obtained here extend and improve many well–known oscillation criteria
that have appeared in the literature for special cases of equations (1.1) and (1.2).

2. OSCILLATION CRITERIA FOR EQUATION (1.1)

In this section, we present some sufficient conditions for the oscillation of all
solutions of equation (1.1). We begin with the following result.

Theorem 2.1. Let conditions (i)–(v), (1.3), and (1.4) hold, and assume that there
exist two sequences {ξ(n)} and {η(n)}, ξ, η : N(n0) → Z, such that ∆ξ(n) ≥
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0, ∆η(n) ≥ 0, and g(n) < ξ(n) < η(n) < n − 1 for n ∈ N(n0). If both of the
first order difference equations

(2.1) ∆y(n) + cq(n)f

(

g(n)−1
∑

k=n1

(

k

a1/α(n)

)

)

f
(

y1/α[g(n)]
)

= 0, n1 ∈ N(n0),

for any constant 0 < c < 1, and

(2.2) ∆z(n) + q(n)f(ξ(n) − g(n))f

(

η(n)−1
∑

k=ξ(n)

a−1/α(k)

)

× f
(

z1/α[η(n)]
)

= 0, n1 ∈ N(n0),

are oscillatory, and

(2.3)

∞
∑

`=n1





1

a(`)

`−1
∑

k=n1

q(k)f (g(k)) f





∞
∑

s=g(k)

a−1/α(s)









1/α

= ∞,

then equation (1.1) is oscillatory.

Proof. Assume, for the sake of a contradiction, that equation (1.1) has a nonoscil-
latory solution {x(n)} and that {x(n)} is eventually positive. Then, there exists
a positive integer n1 ≥ n0 such that x(n) > 0 and x[g(n)] > 0 for n ≥ n1. From
equation (1.1), we see that ∆

(

a(n)(∆2x(n))α
)

≤ 0 for n1 ≤ n ∈ N(n0). There ex-
ists n2 ∈ N(n0), n2 ≥ n1, such that ∆x(n) and ∆2x(n) are of fixed sign for n ≥ n2.
There are the following four possibilities to consider.

(I) ∆2x(n) > 0 and ∆x(n) > 0 for n ≥ n2;

(II) ∆2x(n) > 0 and ∆x(n) < 0 for n ≥ n2;

(III) ∆2x(n) < 0 and ∆x(n) > 0 for n ≥ n2; and

(IV) ∆2x(n) < 0 and ∆x(n) < 0 for n ≥ n2.

We note that Case (IV) cannot hold. In fact, if ∆2x(n) < 0 and ∆x(n) < 0
for n ≥ n2, then lim

n→∞
x(n) = −∞, which contradicts the positivity of x(n). We

now consider each case.

Case (I). There exist an integer n3 ∈ N(n0), n3 ≥ n2, and a constant b, 0 < b < 1,
such that

(2.4) ∆x(n) ≥ bn∆2x(n) = b
n

a1/α(n)
y1/α(n) for n ≥ n3,

where y(n) = a(n)(∆2x(n))α. Summing (2.4) from n3 to n − 1 ≥ n3, we have

x(n) ≥ b

n−1
∑

k=n3

ka−1/α(k)y1/α(k) ≥ b

(

n−1
∑

k=n3

ka−1/α(k)

)

y1/α(k) for n ≥ n3.
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Now, there exists n4 ∈ N(n0), n4 ≥ n3, such that

(2.5) x[g(n)] ≥ b

(

g(n)−1
∑

k=n3

ka−1/α(k)

)

y1/α[g(n)] for n ≥ n4.

Using (2.5) and (1.4) in equation (1.1), we obtain

(2.6) −∆y(n) = q(n)f(x[g(n)]) ≥ f(b)q(n)f

(

g(n)−1
∑

k=n3

ka−1/α(k)

)

× f
(

y1/α[g(n)]
)

for n ≥ n4.

Summing the above inequality from n ≥ n4 to u ≥ n and letting u → ∞, we have

y(n) ≥ f(b)

∞
∑

s=n

q(s)f

(

g(s)−1
∑

k=n3

ka−1/α(k)

)

f
(

y1/α[g(s)]
)

.

The sequence {y(n)} is obviously strictly decreasing for n ≥ n4. Hence, by the
discrete analog of Theorem 1 in [9] (also see [6]), we conclude that there exists a
positive solution {y(n)} of equation (2.1) with lim

n→∞
y(n) = 0. This contradiction

completes the proof for this case.

Case (II). For t ≥ s ≥ n0, we have

x(t) − x(s) =

t−1
∑

k=s

∆x(k),

or
x(s) ≥ (t − s)(−∆x(t)).

With s and t replaced by g(n) and ξ(n) respectively, we see that

(2.7) x[g(n)] ≥ (ξ(n) − g(n))(−∆x[ξ(n)]) for n ≥ n2 ≥ n1.

Substituting (2.7) into equation (1.1) yields

−
(

a(n)(∆2x(n))α
)

= q(n)f(x[g(n)]) = (n)f(ξ(n) − g(n))f(−x′[ξ(n)])

for n ≥ n2. Setting z(n) = −∆x(n), we obtain

(2.8) ∆ (a(n)(∆z(n))α) = (n)f(ξ(n) − g(n))f(z[ξ(n)]) for n ≥ n2.

Clearly, z(n) > 0 and ∆z(n) < 0 for n ≥ n2. Next, for t ≥ s ≥ n2, we have

z(s) ≥

t−1
∑

k=s

−∆z(k) =

t−1
∑

k=s

a−1/α(k) (−a(k)(∆z(k))α)
1/α

≥

(

t−1
∑

k=s

a−1/α(k)

)

(−a(t)(∆z(t))α)
1/α

.



Oscillation criteria for certain third order nonlinear difference equations 31

Replacing s and t with ξ(n) and η(n) respectively, we obtain

(2.9) z[ξ(n)] ≥

(

g(n)−1
∑

k=ξ(n)

a−1/α(k)

)

w1/α[η(n)] for n ≥ n3 ≥ n2,

where w(n) = −a(n)(∆z(n))α. Using (1.4) and (2.9) in (2.8), we have

∆w(n) + q(n)f(ξ(n) − g(n))f

(

η(n)−1
∑

k=ξ(n)

a−1/α(k)

)

f
(

w1/α[η(n)]
)

≤ 0 for n ≥ n3.

The rest of the proof is similar to that of Case (I) above, and hence is omitted.

Case (III). There exist n2 ∈ N(n0), n2 ≥ n1, and a constant 0 < d < 1 such that

x(n) ≥ dn∆x(n) for n ≥ n2.

Hence, there exists n3 ∈ N(n0), n3 ≥ n2, such that

(2.10) x[g(n)] ≥ dg(n)v[g(n)] for n ≥ n3,

where v(n) = ∆x(n) > 0. Using (2.10) and (1.4) in equation (1.1), we have

(2.11) ∆ (a(n)(∆v(n))α) + f(d)q(n)f(g(n))f(v[g(n)]) ≤ 0 for n ≥ n3.

We see that v(n) > 0 and ∆v(n) < 0 for n ≥ n3. Now, for s ≥ t ≥ n3, it can easily
be seen that

a(s)(−∆v(s))α ≥ a(t)(−∆v(t))α,

or equivalently,

(2.12) −a1/α(s)∆v(s) ≥ −a1/α(t)∆v(t) for s ≥ t ≥ n3.

Dividing (2.12) by a−1/α(s) and summing from t = n to u − 1 ≥ n ≥ n3, we have

v(n) ≥ v(n) − v(u) ≥
(

−a1/α(n)∆v(n)
)

u−1
∑

s=n

a−1/α(s).

Letting u → ∞ in the above inequality gives

(2.13) v(n) ≥ −a−1/α(n)∆v(n)

(

∞
∑

s=n

a−1/α(s)

)

.

Combining (2.13) with the inequality

−a1/α(n)∆v(n) ≥ −a−1/α(a3)∆v(n3) for n ≥ n3,
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which is implied by (2.12), we find that

v(n) ≥ −a1/α(t3)∆v(n3)

(

∞
∑

s=n

a−1/α(s)

)

for n ≥ n3.

Thus, there exist a constant d > 0 and n4 ∈ N(n0), n4 ≥ n3, such that

(2.14) v[g(t)] ≥ d

∞
∑

s=g(n)

a−1/α(s) for n ≥ n4.

Summing inequality (2.11) from n3 to n − 1 ≥ n3 yields

(2.15) f(d)

n−1
∑

k=n3

q(k)f(g(k))f(v[g(k)]) ≤ a(n3)(∆v(n3))
α − a(n)(∆v(n))α.

Using (2.14) and (1.4) in (2.15) gives

(2.16) c

(

1

a(n)

n−1
∑

k=n3

q(k)f(g(k))f

( ∞
∑

s=g(k)

a−1/α(s)

)

)1/α

≤ −∆v(n),

where c = (f(d)f(d))1/α. Summing (2.16) from n3 to n − 1 ≥ n3, we have

c

n−1
∑

`=n3

(

1

a(`)

`−1
∑

k=n3

q(k)f(g(k))f

( ∞
∑

s=g(k)

a−1/α(s)

)

)1/α

≤ v(n3)−v(n) ≤ v(t3) < ∞.

Letting n → ∞ in the above inequality, we obtain a contradiction to condition
(2.3). This completes the proof of the theorem. 2

If we combine equations (2.1) and (2.2) into one by letting

(2.17) Q(n) = min

{

cq(n)f

(

g(n)−1
∑

k=n1

ka−1/α(k)

)

,

q(n)f(ξ(n) − g(n))f

(

η(n)−1
∑

k=ξ(n)

a−1/α(k)

)}

for any constant 0 < c < 1 and all n1 ∈ N(n0), then we can easily see that equations
(2.1) and (2.2) can be replaced by

(2.18) ∆w(n) + Q(n)f
(

w1/α[η(n)]
)

= 0.

Remark 2.1. We note that the results of this paper are presented in a form that allows
us to extract results for equation (1.1) that are valid in case

(2.19)

∞
∑

a
−1/α(n) = ∞.
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The reason for this is that condition (1.3) is only needed in the proof of Case (III) above.

Thus, we have the following result.

Theorem 2.2. Let conditions (i)–(v), (1.4), and (2.19) hold, and assume that
there exist two real sequences {ξ(n)} and {η(n)} such that ∆ξ(n) ≥ 0, ∆η(n) ≥ 0,
and g(n) < ξ(n) < η(n) < n − 1 for n ∈ N(n0). If equation (2.18) is oscillatory,
then equation (1.1) is oscillatory.

Proof. The proof of Theorem 2.2 is exactly the same as that of Cases (I) and (II)
in Theorem 2.1 and so is omitted.

The following corollary is immediate.

Corollary 2.1. Let conditions (i)–(v), (1.3), (1.4), and (2.3) hold, and assume
that there exist real nondecreasing sequences {ξ(n)} and {η(n)} such that g(n) <
ξ(n) < η(n) < n− 1 for n ∈ N(n0). Then (1.1) is oscillatory if one of the following
conditions holds :

(I1)
f(u1/α)

u
≥ 1 for u 6= 0, and

lim sup
n→∞

n−1
∑

k=η(n)

Q(k) > 1;

(I2)

∫

±0

du

f(u1/α)
< ∞, and

∞
∑

Q(n) = ∞;

(I3)
u

f(u1/α)
→ 0 as u → ∞, and

lim sup
n→∞

n−1
∑

k=η(n)

Q(k) > 0.

3. OSCILLATION CRITERIA FOR EQUATION (1.2)

The purpose of this section is to establish criteria for the oscillation of equa-
tion (1.2) which contains mixed nonlinearities and functional arguments.

Theorem 3.1. Let conditions (i)–(v) and (1.3)–(1.5) hold, and assume that there
exist nondecreasing sequences of real numbers {ξ(n)}, {ρ(n)}, and {θ(n)} such that
g(n) < ξ(n) < n − 1 and σ(n) > ρ(n) > θ(n) > n + 1 for n ∈ N(n0). If the first
order advanced difference equation

(3.1) ∆y(n) − p(n)h(σ(n) − ρ(n))h

(

ρ(n) − θ(n)

a1/α(θ(n))

)

h
(

y1/α[θ(n)]
)

= 0,

and the first order delay difference equation

(3.2) ∆w(n) + cq(n)f(g(n))f

(

ξ(n) − g(n)

a1/α[ξ(n)]

)

f
(

w1/α[ξ(n)]
)

= 0,
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for every constant 0 < c < 1 are oscillatory, and

(3.3)

∞
∑

u=n0≥0

(

1

a(u)

u−1
∑

s=n0

q(s)f(ξ(s) − g(s))f

(

∞
∑

k=ξ(s)

a−1/α(k)

))1/α

= ∞,

then equation (1.2) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of equation (1.2), say, x(n) >
0, x[g(n)] > 0, and x[σ(n)] > 0 for n ≥ n0 ≥ 0. It is easy to see that ∆x(n) and
∆2x(n) are of fixed sign for n ≥ n1 ≥ n0. Again there are four possibilities to
consider.

(I) ∆2x(n) > 0 and ∆x(n) > 0 for n ≥ n1;

(II) ∆2x(n) < 0 and ∆x(n) > 0 for n ≥ n1;

(III) ∆2x(n) > 0 and ∆x(n) < 0 for n ≥ n1; and

(IV) ∆2x(n) < 0 and ∆x(n) < 0 for n ≥ n1.

Case (IV) cannot hold since ∆2x(n) < 0 and ∆x(n) < 0 for n ≥ n1 would
imply lim

n→∞
x(n) = −∞, which contradicts the positivity of x(n).

Case (I). For t ≥ s ≥ n1, we have

x(t) − x(s) =

t−1
∑

k=s

∆x(k),

and hence

x(t) ≥ (t − s)∆x(s).

Replacing t and s by σ(n) and ρ(n) respectively, we obtain

(3.4) x[σ(n)] ≥ (σ(n) − ρ(n))∆x[ρ(n)] for n ≥ n2 ≥ n1,

and substituting into (1.2) gives

(3.5) ∆
(

a(n)(∆2x(n))α
)

≥ p(n)h(x[σ(n)])

≥ p(n)h(σ(n) − ρ(n))h(∆x[ρ(n)]) for n ≥ n2.

Setting y(n) = ∆x(n) in (3.5), we have

(3.6) ∆ (a(n)(∆y(n))α) ≥ p(n)h(σ(n) − ρ(n))h(y[ρ(n)]) for n ≥ n2.

Once again, for t ≥ s ≥ n2, we have y(t) ≥ (t − s)∆y(s), so replacing t and s by
ρ(n) and θ(n) respectively yields
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(3.7) y[ρ(n)] ≥ (ρ(n) − θ(n))∆y[θ(n)]

=

(

ρ(n) − θ(n)

a1/α[θ(n)]

)

z1/α[θ(n)] for n ≥ n3 ≥ n2,

where z(n) = a(n)(∆y(n))α. Using (3.7) and (1.5) in (3.6) gives

(3.8) ∆z(n) ≥ p(n)h(σ(n) − ρ(n))h

(

ρ(n) − θ(n)

a1/α[θ(n)]

)

h
(

z1/α[θ(n)]
)

for n ≥ n3.

By known results in [6, 8], we arrive at the desired contradiction.

Case (II). There exist n1 ≥ n0 and a constant 0 < b < 1 such that

x(n) ≥ bn∆x(n) for n ≥ n1,

so there exists n2 ≥ n1 such that

(3.9) x[g(n)] ≥ bg(n)y[g(n)] for n ≥ n2,

where y(n) = ∆x(n). From (3.9) and (1.4), equation (1.2) becomes

(3.10)
∆ (a(n)(∆y(n))α) = ∆

(

a(n)(∆2x(n))α
)

= q(n)f(x[g(n)])
≥ f(b)q(n)f(g(n))f(y[g(n)]) for n ≥ n2.

Clearly, y(n) > 0 and ∆y(n) < 0 for n ≥ n2. Now for t ≥ s ≥ n2, we have

y(s) ≥ (t − s)(−∆y(t)).

Replacing s and t by g(n) and ξ(n) respectively, we obtain

y[g(n)] ≥ (ξ(n) − g(n))(−∆y[ξ(n)]) for n ≥ n3 ≥ n2,

or

(3.11) y[g(n)] ≥

(

ξ(n) − g(n)

a1/α[ξ(n)]

)

z1/α[ξ(n)] for n ≥ n3,

where z(n) = a(n)(∆y(n))α. Inserting (3.11) into (3.10), we see that

∆z(n) + f(b)q(n)f(g(n))f

(

ξ(n) − g(n)

a1/α[ξ(n)]

)

f
(

z1/α[ξ(n)]
)

≤ 0 for n ≥ n3.

The rest of the proof is similar to that of Case (I) of Theorem 2.1.

Case (III). For t ≥ s ≥ n1, we have x(s) ≥ (t − s)(−∆x(t)), and replacing s and
t with g(n) and ξ(n) respectively gives

(3.12) x[g(n)] ≥ (ξ(n) − g(n))w[ξ(n)] for n ≥ n2 ≥ n1,
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where w(n) = −∆x(n). Using (3.12) in equation (1.2), we have

−∆ (a(n)(∆w(n))α) = ∆
(

a(n)(∆2x(n))α
)

= q(n)f(x[g(n)])

≥ q(n)f(ξ(n) − g(n))f(w[ξ(n)]),

or
∆ (a(n)(∆w(n))α) + q(n)f(ξ(n) − g(n))f(w[ξ(n)]) ≤ 0 for n ≥ n2.

The remainder of the proof is similar to that of Case (III) of Theorem 2.1 and is
omitted. This completes the proof of the theorem.

When condition (2.19) holds, we have the following immediate result.

Theorem 3.2. Let conditions (i)–(v), (1.4), (1.5), and (2.19) hold, and assume that
there exist nondecreasing sequences {ξ(n)}, {ρ(n)}, and {θ(n)} such that g(n) <
ξ(n) < n − 1 and σ(n) > ρ(n) > θ(n) > n + 1 for all n0 ≤ n ∈ N(n0). If equations
(3.1) and (3.2) are oscillatory, then equation (1.2) is oscillatory.

From Theorem 3.1, the following corollary is immediate.

Corollary 3.1. Let conditions (i)–(v), (1.3)–(1.5), and (3.3) hold, and assume
that there exist nondecreasing real sequences {ξ(n)}, {ρ(n)}, and {θ(n)} such that
g(n) < ξ(n) < n− 1 and σ(n) > ρ(n) > θ(n) > n+1 for n0 ≤ n ∈ N(n0). Equation
(1.2) is oscillatory if one of the following conditions holds :

(II)1
h(u1/α)

u
≥ 1 and

f(u1/α)

u
≥ 1 for u 6= 0,

lim sup
n→∞

θ(n)−1
∑

k=n

p(k)h(σ(k) − ρ(k))h

(

ρ(k) − θ(k)

a1/α[θ(k)]

)

> 1,

and

lim sup
n→∞

n−1
∑

k=ξ(n)

q(k)f(g(k))f

(

ξ(k) − g(k)

a1/α[ξ(k)]

)

> 1;

(II)2

∫ ±∞ du

h(u1/α)
< ∞ and

∫

±0

du

f(u1/α)
< ∞,

∞
∑

k=n0

p(k)h(σ(k) − ρ(k))h

(

ρ(k) − θ(k)

a1/α[θ(k)]

)

= ∞,

and
∞
∑

k=n0

q(k)f(g(k))f

(

ξ(k) − g(k)

a1/α[ξ(k)]

)

= ∞;

(II)3
u

h(u1/α)
→ 0 as u → ∞ and

u

f(u1/α)
→ 0 as u → ∞,

lim sup
n→∞

θ(n)−1
∑

k=n

p(k)h(σ(k) − ρ(k))h

(

ρ(k) − θ(k)

a1/α[θ(k)]

)

> 0,
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and

lim sup
n→∞

n−1
∑

k=ξ(n)

q(k)f(g(k))f

(

ξ(k) − g(k)

a1/α[ξ(k)]

)

> 0.

4. GENERAL REMARKS

1. The results of this paper are presented in a form which are essentially new and
of a high degree of generality. They unify, improve, and extend many well–known
oscillation criteria that have appeared in the literature for some special cases of
equations (1.1) and (1.2).

2. We note that conditions (1.4) and (1.5) are automatically satisfied if we let
f(x) = xβ and h(x) = xγ , where β and γ are ratio of positive odd integers.

3. The results of this paper can be easily extended to neutral difference equations
of the form

∆
(

a(n)
(

∆2(x(n) + c(n)x[τ(n)])
)α
)

+ q(n)f(x[g(n)]) = 0

and

∆
(

a(n)
(

∆2(x(n) + c(n)x[τ(n)])
)α
)

= q(n)f(x[g(n)]) + p(n)h(x[σ(n)]),

where {c(n)} and {τ(n)} are sequences of real numbers and lim
n→∞

τ(n) = ∞. The

formulation of results for the above neutral equations are easy and the details are
left to the reader.
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