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FUNCTIONAL EQUATIONS IN SCHWARTZ

DISTRIBUTIONS AND THEIR STABILITIES
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Dedicated to the Memory of Professor D. S. Mitrinović (1908–1995)

Employing two methods we consider a class of n-dimensional functional equa-
tions in the space of Schwartz distributions. As the first approach, employ-
ing regularizing functions we reduce the equations in distributions to classical
ones of smooth functions and find the solutions. Secondly, using differentia-
tion in distributions, converting the functional equations to differential equa-
tions and find the solutions. Also we consider the Hyers-Ulam stability of
the equations.

1. INTRODUCTION

The main purpose of this article is to introduce two approaches of solving
functional equations in Schwartz distributions. As the first approach, using regu-
larizing sequence of test functions and converting given distributional versions of
functional equations to classical ones [4, 5] we obtain the solutions. In particular,
this approach is useful to consider the Hyers-Ulam stability problems of func-
tional equations in Schwartz distributions. Secondly, in the theory of Schwartz

distributions one can differentiate freely underlining functions, which is one of the
most powerful tools of the Schwartz theory and can be applied to solving some
class of functional equations by reducing the equations to differential equations [2,
3, 6, 7]. Here we denote by Rn

+ = {(x1, . . . , xn) ∈ Rn : xj > 0, j = 1, . . . , n} and
In = {(x1, . . . , xn) ∈ Rn : xj > −1, j = 1, . . . , n} and xy = (x1y1, . . . , xnyn) for
x = (x1, . . . , xn), y = (y1, . . . , yn). First we introduce the distributional analogue
of the following functional equations.
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Quadratic functional equation:

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y).

D’Alembert equation:

(1.2) f(x+ y) + f(x− y) = 2f(x)f(y).

Pompeiu equations:

(1.3) f(x+ y + xy) = g(x) + h(y) + g(x)h(y), x, y ∈ In,

(1.4) f(x+ y + xy) = f(x) + f(y) + f(x) f(y), x, y ∈ In.

Logarithmic functional equations:

(1.5) f(xy) = g(x) + h(y), x, y ∈ R
n
+,

(1.6) f(xy) = f(x) + f(y), x, y ∈ R
n
+.

Multiplicative functional equations:

(1.7) f(xy) = g(x)h(y), x, y ∈ R
n
+,

(1.8) f(xy) = f(x)f(y), x, y ∈ R
n
+.

The functional equations (1.1) − (1.8) can be generalized to the space of
distributions, respectively, as follows.

Quadratic functional equation in D′(Rn):

(1.9) u ◦A+ u ◦B = 2u ◦ P1 + 2u ◦ P2,

D’Alembert equation in D′(Rn):

(1.10) u ◦A+ u ◦B = 2u⊗ u.

Pompeiu equations in D′(In):

(1.11) u ◦ S = v ◦ P1 + w ◦ P2 + v ⊗ w,

(1.12) u ◦ S = u ◦ P1 + u ◦ P2 + u⊗ u.

Logarithmic functional equations in D′(Rn
+):

(1.13) u ◦ T = v ◦ P1 + w ◦ P2,

(1.14) u ◦ T = u ◦ P1 + u ◦ P2.

Multiplicative functional equations in D′(Rn
+):

(1.15) u ◦ T = v ⊗ w,

(1.16) u ◦ T = u⊗ u.

where A(x, y) = x + y, B(x, y) = x − y, P1(x, y) = x, P2(x, y) = y, x, y ∈
Rn, S(x, y) = x + y + xy, x, y ∈ In, T (x, y) = xy, x, y ∈ Rn

+ and ◦ denotes
the pullback of distributions.



16 Jae-Young Chung

2. SOME OPERATIONS ON DISTRIBUTIONS

Let Ω be an open subset of R
n. We denote by D′(Ω) the space of Schwartz

distributions on Ω. Recall that a distribution u is a linear functional on C∞
c (Ω) of

infinitely differentiable functions on Ω with compact supports such that for every
compact set K ⊂ Ω there exist constants C and k satisfying

|〈u, ϕ〉| ≤ C
∑

|α|≤k

sup |∂αϕ|

for all ϕ ∈ C∞
c (Ω) with supports contained in K. Here we denote by |α| = α1 +

· · · + αn, ∂α = ∂α1

1 · · · ∂αn
n , for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn

0 ,

where N0 is the set of non-negative integers and ∂j =
∂

∂xj

.

We briefly introduce some basic operations in D′(Ω). Let u ∈ D′(Ω). Then
the k-th partial derivative ∂ku of u is defined by

〈∂ku, ϕ〉 = −〈u, ∂kϕ〉

for k = 1, . . . , n. Let f ∈ C∞(Ω). Then the multiplication fu is defined by

〈fu, ϕ〉 = 〈u, fϕ〉.

We denote by Ωj open subsets of Rnj for j = 1, 2.

Definition 2.1. Let uj ∈ D′(Ωj). Then the tensor product u1 ⊗ u2 of u1 and u2

is defined by

〈u1 ⊗ u2, ϕ(x1, x2)〉 = 〈u1 , 〈u2 , ϕ(x1, x2)〉 〉, ϕ(x1, x2) ∈ C∞
c (Ω1 × Ω2).

The tensor product u1 ⊗ u2 belongs to D′(Ω1 × Ω2).

Definition 2.2. Let uj ∈ D′(Ωj) and f : Ω1 → Ω2 a smooth function such that for

each x ∈ Ω1 the derivative f ′(x) is surjective. Then there exist a unique continuous

linear map f∗ : D′(Ω2) → D′(Ω1) such that f∗u = u ◦ f when u is a continuous

function. We call f∗u the pullback of u by f and often denoted by u ◦ f .
For more details of tensor product and pullback of distributions we refer the

reader to [8, Chapter IV].

3. CONVOLUTION OF REGULARIZING FUNCTIONS

In this section using regularizing functions we consider the equations (1.9)
and (1.10). We denote by δ(x) the function on Rn such that

δ(x) =

{

A exp(−(1 − |x|2)−1), |x| < 1

0, |x| ≥ 1,
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where

A =

(

∫

|x|<1

exp(−(1 − |x|2)−1) dx

)−1

.

It is easy to see that δ(x) an infinitely differentiable function with support {x :
|x| ≤ 1}. Now we employ the function δt(x) := t−nδ(x/t), t > 0. Let u ∈ D′(Rn).
Then for each t > 0, (u ∗ δt)(x) = 〈uy, δt(x − y)〉 is a smooth function in Rn and
(u∗δt)(x) → u as t→ 0+ in the sense of distributions, that is, for every ϕ ∈ C∞

c (Rn)

〈u, ϕ〉 = lim
t→0+

∫

(u ∗ δt)(x)ϕ(x) dx.

Theorem 3.1. Every solution u in D′(Rn) of the equation (1.9) has the form

u =
∑

1≤j≤k≤n

ajk xjxk.

Proof. Convolving δt(x)δs(y) in each side of (1.9) we have

[(u ◦A) ∗ (δt(x)δs(y))](ξ , η) = 〈u ◦A , δt(ξ − x)δs(η − y)〉

= 〈ux ,

∫

δt(ξ − x+ y)δs(η − y) dy〉

= 〈ux ,

∫

δt(ξ + η − x− y)δs(y) dy〉

= 〈ux , (δt ∗ δs)(ξ + η − x)〉
= (u ∗ δt ∗ δs)(ξ + η).

Similarly we have

(3.1) [(u ◦B) ∗ δt(x)δs(y)](ξ , η) = (u ∗ δt ∗ δs)(ξ + η),

(3.2) [(u ◦ P1) ∗ δt(x)δs(y)](ξ , η) = (u ∗ δt)(ξ),

(3.3) [(u ◦ P2) ∗ δt(x)δs(y)](ξ , η) = (u ∗ δt)(η),

Thus the equation (1.9) is converted to the following equation

(3.4) (u ∗ δt ∗ δs)(x + y) + (u ∗ δt ∗ δs)(x − y) − 2(u ∗ δt)(x) − 2(u ∗ δs)(y) = 0

for all x, y ∈ Rn, t, s > 0. In view of (3.4) it is easy to see that

f(x) := lim sup
t→0+

(u ∗ δt)(x)

exists. Letting y = 0 in (3.4) we have

(3.5) (u ∗ δt ∗ δs)(x) − (u ∗ δt)(x) − (u ∗ δs)(0) = 0.
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Fix x ∈ Rn and let t = tn → 0+ so that (u ∗ δtn
)(x) → f(x) in (3.5) to get

(3.6) (u ∗ δs)(x) − f(x) − (u ∗ δs)(0) = 0.

From the inequality (3.4), (3.5), (3.6) and the triangle inequality we have

(3.7) f(x+ y) + f(x− y) − 2f(x) − 2f(y) = 0

for all x, y ∈ Rn. In view of (3.6), f is a smooth function. Thus the solution f of
the equation (3.7) has the form

(3.8) f(x) =
∑

1≤j≤k≤n

ajk xjxk.

It follows from (3.6) that

〈u, ϕ〉 = lim
tn→0+

∫

(u ∗ δtn
)(x)ϕ(x) dx

=

∫

f(x)ϕ(x) dx + lim
tn→0+

∫

(u ∗ δtn
)(0)ϕ(x) dx

=

∫

f(x)ϕ(x) dx.

This completes the proof. �

Now we consider the equation (1.10).

Theorem 3.2 Every solution u in D′(Rn) of the equation (1.10) has the form

u = 0 or u = cos(c · x), c ∈ C
n.

Proof. Similarly as in the proof of Theorem 3.1, convolving δt(x)δs(y) in each
side of (1.10) we can convert the equation (1.10) to the following equation

(3.9) (u ∗ δt ∗ δs)(x+ y) + (u ∗ δt ∗ δs)(x− y) − 2(u ∗ δt)(x)(u ∗ δs)(y) = 0

for all x, y ∈ R
n, t, s > 0. In view of (3.9) it is easy to see that

f(y) := lim sup
s→0+

(u ∗ δs)(y)

exists. In (3.9), fix x and let t = tk → 0+ so that (u ∗ δtk
)(x) → f(x) as k → ∞.

Then we have

(3.10) (u ∗ δs)(x+ y) + (u ∗ δs)(x − y) − 2f(x) (u ∗ δs)(y) = 0.

Putting y = 0 in (3.10) we have

(3.11) (u ∗ δs)(x) = (u ∗ δs)(0)f(x).
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If (u ∗ δs)(0) = 0 for all s > 0 we have (u ∗ δs)(x) = 0 for all x ∈ Rn, s > 0, which
implies u = 0. If (u ∗ δs)(0) 6= 0 for some s > 0 it follows from (3.10) and (3.11)
that

f(x+ y) + f(x− y) − 2f(x) f(y) = 0.

Since f is a smooth function in view of (3.11) it follows that f(x) = cos(c · x) for
some c ∈ Cn. Thus we have

(u ∗ δs)(x) = (u ∗ δs)(0) cos(c · x).

Letting s = sk → 0 so that (u ∗ δsk
)(0) → f(0) as k → ∞ in (3.11) we have

u = cos(c · x).

This completes the proof. �

Corollary 3.3. Every locally integrable solution f(x) of the equation (1.2) has the

forms f(x) = 0 or f(x) = cos(c · x) for some c ∈ Cn.

Proof. Since every locally integrable function f can be regarded as a distribution
via the equation

〈f, ϕ〉 =

∫

f(x)ϕ(x) dx, ϕ ∈ C∞
c (Rn),

we have
f = 0 or f = cos(c · x)

in the sense of distribution, which means that

f(x) = 0 or g(x) := f(x) − cos(c · x) = 0

for all x in a set E with the Lebesgue measure m(Ec) = 0.

Assume that f(x) = 0 for all x ∈ E. Let z ∈ R
n be given and set Ez =

E ∩ (E − z). Then Ez is Lebesgue measurable with m(Ec
z) = 0. Let w ∈ Ez and

replace x by w + z, y by w in (1.2) to get

f(2w + z) + f(z) − 2f(w + z)f(w) = 0.

Thus we have
f(2w + z) + f(z) = 0

for all w ∈ Ez. Since m(Ec
z) = 0 we must have 2w+ z ∈ E for some w ∈ Ez , which

implies f(z) = 0. Now assume that g(x) = 0 for all x ∈ E. Note that g satisfies
the equation

(3.12) g(x+ y) + g(x− y) − 2g(x)g(y) − 2f(x) cos(c · y) + 2f(y) cos(c · x) = 0.

Similarly, for given z ∈ Rn let w ∈ Ez and replace x by w + z, y by w in (3.12).
Then we have

g(2w + z) + g(z) = 0

for all w ∈ Ez , which implies g(z) = 0. This completes the proof. �
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4. USING DIFFERENTIATION

In this section, using differentiation in Schwartz distributions we consider
the equations (1.11)−(1.16).

Lemma 4.1. Let Y be an open subset of Rn−1, I an open interval of R and let

u ∈ D′(Y × I). If ∂nu = 0 then u can be written as

u = un−1 ⊗ 1xn
,

where un−1 ∈ D′(Y ), which means that

〈u, φ〉 =

∫

〈un−1, φ(·, xn)〉dxn, φ ∈ C∞
c (Y × I).

We refer the reader to [8, Theorem 3.1.4′] for a proof of the lemma.

Theorem 4.2. The solutions u, v, w ∈ D′(In) of the equation (1.11) are either of

the forms

u = αβ(1 + x1)
a1 · · · (1 + xn)an − 1,

v = α(1 + x1)
a1 · · · (1 + xn)an − 1,

w = β(1 + x1)
a1 · · · (1 + xn)an − 1,

where α, β, aj ∈ C, j = 1, . . . , n with αβ 6= 0, or else

u = v = −1, w : arbitrary,

u = w = −1, v : arbitrary.

Proof. Differentiate (1.11) with respect to xk and yk respectively, to get

(4.1) (1 + yk) (∂ku) ◦ S = (∂kv) ◦ P1 + (∂kv) ⊗ w,

(4.2) (1 + xk) (∂ku) ◦ S = (∂kw) ◦ P2 + v ⊗ (∂kw),

for k = 1, · · · , n. It follows from (4.1) and (4.2) that

(1 + xk) (∂kv) ◦ P1 + (∂kv) ⊗ w) = (1 + yk) (∂kw) ◦ P2 + v ⊗ (∂kw),

which is equivalent to

(4.3) [(1 + xk)∂kv] ⊗ (1 + w) = (1 + v) ⊗ [(1 + yk)∂kw].

We first consider the nontrivial case where v 6= −1 and w 6= −1. Choose ψ0 ∈
C∞

c (In) so that 〈1 + w,ψ0〉 6= 0. Then for every φ ∈ C∞
c (In) we have

(4.4) 〈(1 + xk)∂kv, φ〉〈1 + w,ψ0〉 = 〈1 + v, φ〉〈(1 + yk)∂kw,ψ0〉,
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which implies

(4.5) (1 + xk)∂kv = ak(1 + v)

for some ak ∈ C. Put (4.5) in (4.3) to get

(4.6) (1 + yk)∂kw = ak(1 + w).

It follows from (4.5) that

(4.7) ∂k[(1 + xk)−ak(v + 1)] = 0.

Let k = n. Then by Lemma 4.1 we have

(1 + xn)−an(v + 1) = vn−1 ⊗ 1xn
,

which implies

(4.8) v + 1 = vn−1 ⊗ (1 + xn)an ,

where vn−1 ∈ D′(In−1). Put (4.8) in (4.5) and let k = n− 1 to get

(4.9) (1 + xn−1)∂n−1vn−1 = an−1vn−1.

Applying Lemma 4.1 again in (4.9) we have

(4.10) vn−1 = vn−2 ⊗ (1 + xn−1)
an−1 .

From (4.8) and (4.10) we have

v + 1 = vn−2 ⊗ (1 + xn−1)
an−1(1 + xn)an .

By this process we finally have

(4.11) v + 1 = α(1 + x1)
a1 · · · (1 + xn−1)

an−1(1 + xn)an ,

for some α ∈ C. Also, from (4.6) we have

(12) w + 1 = β(1 + y1)
a1 · · · (1 + yn−1)

an−1(1 + yn)an ,

for some β ∈ C. Now putting (4.11) and (4.12) in (1.11) we have

(4.13) u ◦ S = αβ(1 + x1)
a1(1 + y1)

a1 · · · (1 + xn)an(1 + yn)an − 1.

Choose uj ∈ C∞
c (In) such that uj → u as j → ∞. Let φ, ψ ∈ C∞

c (In) with
∫

ψ(y)dy = 1 and set

(4.14) ϕ(x, y) = (1 + y1) · · · (1 + yn)φ(x + y + x � y)ψ(y).
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Then by simple change of variables we have

(4.15) 〈uj ◦ S, ϕ〉 = 〈uj , φ〉.

Let j → ∞ in (4.15). Then by the continuity of pullback we have

(4.16) 〈u ◦ S, ϕ〉 = 〈u, φ〉.

Applying ϕ(x, y) in (4.16) we have

(4.17) 〈u, φ〉 =

∫

[αβ(1 + x1)
a1 · · · (1 + xn)an − 1]φ(x) dx,

which implies
u = αβ(1 + x1)

a1 · · · (1 + xn)an − 1.

Now if v = −1 or w = −1 it is easy to see that

(4.18) u ◦ S = −1.

for arbitrary w or v, respectively. Applying ϕ(x, y) in (4.18) we have u = −1. This
completes the proof. �

As a direct consequence of the above result we have the following.

Theorem 4.3. The solutions u ∈ D′(In) of the equation (1.12) are of the form

u = (1 + x1)
a1 · · · (1 + xn)an − 1, or u = −1

for some aj ∈ C, j = 1, . . . , n.

Now we consider the logarithmic functional equations.

Theorem 4.4. The solutions u, v, w ∈ D′(In) of the equation (1.13) are of the

forms

(4.19) u = ln(xa1

1 · · ·xan

n ) + α+ β

(4.20) v = ln(xa1

1 · · ·xan
n ) + α

(4.21) w = ln(xa1

1 · · ·xan

n ) + β,

where α, β, aj ∈ C, j = 1, . . . , n.

Proof. Differentiate (1.13) with respect to xk and yk respectively, to get

(4.22) yk (∂ku ◦ T ) = (∂kv) ◦ P1,

(2.23) xk (∂ku ◦ T ) = (∂kw) ◦ P2,

for k = 1, · · · , n. It follows from (4.22) and (4.23) that

(2.24) xk (∂kv ◦ P1) = yk (∂kw ◦ P2),
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which implies

(4.25) xk∂kv = yk∂kw := ak.

As in the proof of Theorem 4.2, applying the Lemma 4.1 in (4.25) successively we
get the equation (4.20) and (4.21). Putting (4.20) and (4.21) in (1.13) we get (4.19).
This completes the proof. �

As a direct consequence of the above result we have the following.

Theorem 4.5. The solutions u ∈ D′(In) of the equation (1.14) are of the form

u = ln(xa1

1 · · ·xan
n ),

where aj ∈ C, j = 1, . . . , n.

Following the same approach as in the proof of Theorem 4.2 we get the
followings.

Theorem 4.6. The solutions u, v, w ∈ D′(In) of the equation (1.15) are either of

the forms

u = αβxa1

1 · · ·xan

n ,

v = αxa1

1 · · ·xan

n ,

w = βxa1

1 · · ·xan
n ,

where α, β, aj ∈ C, j = 1, . . . , n with αβ 6= 0, or else

u = v = 0, w : arbitrary,

u = w = 0, v : arbitrary.

Theorem 4.7. The solutions u ∈ D′(In) of the equation (1.16) are of the form

u = xa1

1 · · ·xan
n ,

where aj ∈ C, j = 1, . . . , n.

5. HYERS-ULAM STABILITIES OF THE EQUATIONS

In this section we consider stability theorems of the quadratic functional
inequality

(5.1) ‖u ◦A+ u ◦B − 2u ◦ P1 − 2u ◦ P2‖ ≤ ε,

and the d’Alembert inequality

(5.2) ‖u ◦A+ u ◦B − u⊗ u‖ ≤ ε,

in the space D′(Rn). Also we consider the Pompeiu inequalities

(5.3) ‖u ◦ S − v ◦ P1 − w ◦ P2 − v ⊗ w‖ ≤ ε,
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(5.4) ‖u ◦ S − u ◦ P1 − u ◦ P2 − u⊗ u‖ ≤ ε,

in the space D′(In), logarithmic functional inequalities

(5.5) ‖u ◦ T − v ◦ P1 − w ◦ P2‖ ≤ ε,

(5.6) ‖u ◦ T − u ◦ P1 − u ◦ P2‖ ≤ ε,

and multiplicative functional inequalities

(5.3) ‖u ◦ T − v ⊗ w‖ ≤ ε,

(5.4) ‖u ◦ T − u⊗ u‖ ≤ ε,

in the space D′(Rn
+). Here ‖ · ‖ denotes the norms |〈 · , ϕ〉| ≤ ε‖ϕ‖L1 for all test

functions ϕ. For the proof of the result we refer the reader to [4, 5].

Theorem 5.1. Let u ∈ D′(Rn) satisfy the inequality (5.1). Then there exists a

unique quadratic function

q(x) =
∑

1≤j≤k≤n

ajk xjxk

such that

‖u− q(x)‖ ≤ ε

2
.

Theorem 5.2. Let u ∈ D′(Rn) satisfy the inequality (5.2) Then either u is a

bounded measurable function satisfying

‖u‖L∞ ≤ 1

2
(1 +

√
1 + 2ε)

or else

u = cos(c · x)
for some c ∈ Cn.

Theorem 5.3. Let u, v, w ∈ D′(In) be a solution of the inequality (5.3) with v 6= −1
and w 6= −1. Then either u, v and w are all bounded functions or of the forms

u = αβ(1 + x1)
a1 · · · (1 + xn)an − 1,

v = α(1 + x1)
a1 · · · (1 + xn)an − 1,

w = β(1 + x1)
a1 · · · (1 + xn)an − 1 + r(x),

where α, β, aj ∈ C, j = 1, . . . , n with αβ 6= 0 and r(x) is a bounded measur-

able function on In such that ‖r‖L∞ ≤ ε. In particular, if v = −1 (w = −1),
w is arbitrary (v is arbitrary) and u is a bounded measurable function such that

‖u(x) + 1‖L∞(In) ≤ ε.

As a direct consequence of the above result we get the following.
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Theorem 5.4. Let u ∈ D′(In) be a solution of the inequality (5.4). Then either u
is a bounded measurable function such that

‖u(x) + 1‖L∞ ≤ 1

2
(1 +

√
1 + 4ε)

or else

u = (1 + x1)
a1 · · · (1 + xn)an − 1

for some a ∈ Cn.

Finally we state the stability of logarithmic functional equations (5.5), (5.6)
and the multiplicative functional equations (5.7), (5.8).

Theorem 5.5. Let u, v, w ∈ D′(Rn
+) satisfy the inequality (5.5). Then u, v, w are

of the forms

u = ln(xa1

1 · · ·xan

n ) + α+ β + r1(x),

v = ln(xa1

1 · · ·xan

n ) + α+ r2(x),

w = ln(xa1

1 · · ·xan

n ) + β + r3(x),

where α, β, aj ∈ C, j = 1, . . . , n and r1, r2, r3 are bounded measurable functions on

Rn
+ such that

‖r1‖L∞ ≤ 3ε, ‖r2‖L∞ ≤ 4ε, ‖r3‖L∞ ≤ 4ε.

Theorem 5.6. Let u ∈ D′(Rn
+) satisfy the inequality (5.6). Then u is of the form

u = ln(xa1

1 · · ·xan

n ) + r(x)

where aj ∈ C, j = 1, . . . , n and r is a bounded measurable function on Rn
+ such that

‖r‖L∞ ≤ ε.

Theorem 5.7. Let u, v, w ∈ D′(Rn
+) satisfy the inequality (5.7) with v 6= 0, w 6= 0.

Then u, v and w are all bounded measurable functions or of the forms

u = αβxa1

1 · · ·xan

n ,

v = αxa1

1 · · ·xan

n ,

w = βxa1

1 · · ·xan

n ,

where α, β, aj ∈ C, j = 1, . . . , n with αβ 6= 0.

Theorem 5.8. Let u ∈ D′(Rn
+) satisfy the inequality (5.8). Then u is a bounded

measurable function such that

‖u(x)‖L∞ ≤ 1

2
(1 +

√
1 + 4ε)
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or else

u = xa1

1 · · ·xan
n ,

where aj ∈ C, j = 1, . . . , n.
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