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A FIXED POINT THEOREM FOR

MULTI-MAPS SATISFYING AN IMPLICIT

RELATION ON METRIC SPACES

S. Sedghi, I. Altun, N. Shobe

We present a fixed point theorem for multi-valued mapping satisfying an
implicit relation on metric spaces.

1. INTRODUCTION AND PRELIMINARIES

In 1922, the Polish mathematician Stefan Banach proved a theorem which
ensures, under appropriate conditions, the existence and uniqueness of a fixed point.
His result is called Banach’s fixed point theorem or the Banach contraction prin-
ciple. This theorem provides a technique for solving a variety of applied problems in
mathematical science and engineering. Many authors have extended, generalized
and improved Banach’s fixed point theorem in different ways. In [6], Jungck

introduced more generalized commuting mappings, called compatible mappings,
which are more general than commuting and weakly commuting mappings. This
concept has been useful for obtaining more comprehensive fixed point theorems
(see, [3], [5], [7]–[13].

Throughout this paper, let (X, d) be a metric space. Also B(X) is the set of
all non-empty bounded subsets of X . Denote for A, B ∈ B(X)

D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B}.

If A consists of a single point a, we write δ(A, B) = δ(a, B). If B also consists
of a single point b, we write δ(A, B) = d(a, b).

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}
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for A, B ∈ CB(X), where CB(X) is the set of all non-empty closed and bounded
subsets of X. Note that D(A, B) ≤ H(A, B) ≤ δ(A, B). Function H is a metric on
CB(X) and is called a Hausdorff metric. It is well known that if X is a complete
metric space, then so is the metric space (CB(X), H). The following definition is
given by Jungck and Rhoades [7].

Definition 1. The mappings I : X → X and F : X → B(X) are weakly compatible

if they commute at coincidence points, i.e., for each point u in X such that Fu =
{Iu}, we have FIu = IFu. (Note that the equation Fu = {Iu} implies that Fu is

a singleton).

2. IMPLICIT RELATION

Implicit relation on metric space have been used in many articles (see [1], [2],
[4], [9], [13]).

Definition 2. Let R
+ be the set of all non-negative real numbers and let T be the

set of all continuous functions T : (R+)5 → R satisfying the following conditions :

(C1) : T (t1, . . . , t5) is non-decreasing in t1 and non-increasing in t2, . . . , t5.

(C2) : There exists h ∈ (0, 1) such that

T (u, v, v, u, v + u) ≤ 0 or T (u, v, u, v, v + u) ≤ 0

implies u ≤ hv.

(C3) : T (u, 0, 0, u, u) > 0, T (u, 0, u, 0, u) > 0 and T (u, u, 0, 0, 2u) > 0, for all

u > 0.

Now, we give some examples.

Example 1. Let T (t1, . . . , t5) = t1−αmax{t2, t3, t4}−βt5, where α, β ≥ 0 and α+2β < 1.
(C1): Obvious. (C2): Let u > 0 and T (u, v, v, u, v + u) = u−α max{u, v}− β(v + u) ≤ 0.
Thus u ≤ max{(α+β)u+βv, (α+β)v+βu}. Now if u ≥ v, then u ≤ (α+β)u+βv ≤ (α+

2β)u, a contradiction. Thus u < v and u ≤ (α+β)v+βu and so u ≤
α + β

1 − β
v. Similarly, let

u > 0 and T (u, v, u, v, v +u) = u−α max{u, v}−β(v +u) ≤ 0, then we have u ≤
α + β

1 − β
v.

If u = 0, then u ≤
α + β

1 − β
v. Thus (C2) is satisfying with h =

α + β

1 − β
< 1. (C3):

T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = u(1−α−β) > 0 and T (u, u, 0, 0, 2u) = u(1−α−2β) > 0,
for all u > 0. Therefore T ∈ T .

Example 2. Let T (t1, . . . , t5) = t1 − mmax{t2, t3, t4, t5/2}, where 0 ≤ m < 1.

(C1): Obvious. (C2): Let u > 0 and T (u, v, v, u, v + u) = u − mmax{u, v} ≤ 0. Thus

u ≤ mmax{u, v}. Now if u ≥ v, then u ≤ mu, a contradiction. Thus u < v and

u ≤ mv. Similarly, let u > 0 and T (u, v, u, v, v + u) = u − mmax{u, v} ≤ 0, then we

have u ≤ mv. If u = 0, then u ≤ mv. Thus (C2) is satisfying with h = m < 1. (C3):

T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = T (u, u, 0, 0, 2u) = u(1−m) > 0, for all u > 0. Therefore

T ∈ T .
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3. THE MAIN RESULT

Theorem 1. Let F, G be mappings of a complete metric space (X, d) into B(X)
and f, g be mappings of X into itself satisfying:

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,

(ii) The pair (F, f) and (G, g) are weakly compatible,

(iii) T (δ(Fx, Gy), d(fx, gy), D(fx, Fx), D(gy, Gy), D(fx, Gy)+D(gy, Fx)) ≤ 0

for every x, y in X, where T ∈ T . Suppose that one of g(X) or f(X) is a closed

subset of X, then there exists a unique p ∈ X such that {p} = {fp} = {gp} = Fp =
Gp.

Proof. Let x0 be an arbitrary point in X . By (i), we choose a point x1 in X such
that y0 = gx1 ∈ Fx0. For this point x1 there exists a point x2 in X such that
y1 = fx2 ∈ Gx1, and so on. Continuing in this manner we can define a sequence
{xn} as follows

y2n = gx2n+1 ∈ Fx2n, y2n+1 = fx2n+2 ∈ Gx2n+1,

for n = 0, 1, 2, . . . . We prove that sequence {yn} is a Cauchy sequence. From
(iii), we have

T
(

δ(Fx2n, Gx2n+1), d(fx2n, gx2n+1), D(fx2n, Fx2n), D(gx2n+1, Gx2n+1),

D(fx2n, Gx2n+1) + D(gx2n+1, Fx2n)
)

≤ 0.

Using (C1) we get

T
(

d(y2n, y2n+1), d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n+1) + d(y2n, y2n)
)

≤ 0

and so we get

T
(

d(y2n, y2n+1), d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n) + d(y2n, y2n+1)
)

≤ 0,

that is
T (u, v, v, u, v + u) ≤ 0,

where u = d(y2n, y2n+1) and v = d(y2n−1, y2n). Hence, from (C2), there exists
h ∈ (0, 1) such that

d(y2n, y2n+1) ≤ hd(y2n−1, y2n).

Similarly, from (iii), we have

T
(

δ(Fx2n+2, Gx2n+1), d(fx2n+2, gx2n+1), D(fx2n+2, Fx2n+2), D(gx2n+1, Gx2n+1),

D(fx2n+2, Gx2n+1) + D(gx2n+1, Fx2n+2)
)

≤ 0.
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Thus we have

T
(

d(y2n+2, y2n+1), d(y2n+1, y2n), d(y2n+1, y2n+2), d(y2n, y2n+1),

d(y2n+1, y2n+1) + d(y2n, y2n+2)
)

≤ 0.

Using (C1) we have

T
(

d(y2n+2, y2n+1), d(y2n+1, y2n), d(y2n+1, y2n+2), d(y2n, y2n+1),

d(y2n, y2n+1) + d(y2n+1, y2n+2)
)

≤ 0,

That is

T (u, v, u, v, v + u) ≤ 0,

where u = d(y2n+2, y2n+1) and v = d(y2n+1, y2n). Hence, from (C2), we have

d(y2n+2, y2n+1) ≤ hd(y2n+1, y2n).

Therefore,

d(yn, yn+1) ≤ hd(yn−1, yn) ≤ · · · ≤ hnd(y0, y1),

Thus

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(ym−1, ym)

≤ hnd(y0, y1) + hn+1d(y0, y1) + · · · + hmd(y0, y1)

=
hn − hm

1 − h
d(y0, y1)

≤
hn

1 − h
d(y0, y1) → 0.

Hence the sequence {yn}, is a Cauchy sequence in X . By completeness X

there exist p ∈ X such that

lim
n→∞

yn = lim
n→∞

y2n = lim
n→∞

gx2n+1 = p ∈ lim
n→∞

Fx2n,

and

lim
n→∞

yn = lim
n→∞

y2n+1 = lim
n→∞

fx2n+2 = p ∈ lim
n→∞

Gx2n+1.

Suppose that g(X) is closed, then for some v ∈ X we have p = gv ∈ g(X). If
set x2n, v replacing x, y respectively, in inequality (iii) we get

T
(

δ(Fx2n, Gv), d(fx2n, gv), D(fx2n, Fx2n), D(gv, Gv),

D(fx2n, Gv) + D(gv, Fx2n)
)

≤ 0.
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From (C1), we have

T
(

δ(y2n, Gv), d(y2n−1, gv), d(y2n−1, y2n), D(gv, Gv),

D(y2n−1, Gv) + d(gv, y2n)
)

≤ 0.

Letting n → ∞, we have

T
(

δ(p, Gv), d(p, gv), d(p, p), D(p, Gv), D(p, Gv) + d(p, p)
)

≤ 0.

Thus from C1 we get,

T
(

δ(p, Gv), 0, 0, δ(p, Gv), δ(p, Gv)
)

≤ 0.

That is, T (u, 0, 0, u, u) ≤ 0, hence from (C3), we get u = δ(p, Gv) = 0. Hence
Gv = {p} = {gv}. From weak compatibility of (G, g) , we have Ggv = gGv, hence
Gp = {gp}. If set x2n, p replacing x, y respectively, in inequality (iii) we get

T
(

δ(Fx2n, Gp), d(fx2n, gp), D(fx2n, Fx2n), D(gp, Gp),

D(fx2n, Gp) + D(gp, Fx2n)
)

≤ 0.

From (C1), we have

T
(

d(y2n, gp), d(y2n−1, gp), d(y2n−1, y2n), d(gp, gp), d(y2n−1, gp) + d(gp, y2n)
)

≤ 0.

Letting n → ∞, we get

T
(

d(p, gp), d(p, gp), d(p, p), d(gp, gp), d(p, gp) + d(gp, p)
)

≤ 0.

That is, T (u, u, 0, 0, 2u) ≤ 0, hence from (C3), we have u = d(p, gp) = 0. Hence
gp = p. Therefore, Gp = {p}. Since Gp ⊆ f(X), then there exists w ∈ X such that
{fw} = Gp = {gp} = {p}. Now if set w, p replacing x, y respectively , in inequality
(iii) we get

T
(

δ(Fw, Gp), d(fw, gp), D(fw, Fw), D(gp, Gp), D(fw, Gp) + D(gp, Fw)
)

≤ 0.

and so we have
T

(

δ(Fw, p), 0, δ(p, Fw), 0, δ(p, Fw)
)

≤ 0.

That is, T (u, 0, u, 0, u) ≤ 0, hence from (C3), we have u = δ(Fw, p) = 0. Hence
Fw = {p} = Gp = {fw} = {gp}. Since Fw = {fw} and the pair (F, f) is weakly
compatible, then we obtain Fp = Ffw = fFw = {fp}. Therefore, we obtain
Fp = Gp = {fp} = {gp} = {p}.

The proof is similar when f(X) is assumed to be a closed subset of X .
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To see that p is unique, suppose that {q} = {gq} = {fq} = Fq = Gq. If
p 6= q, then

T
(

δ(Fp, Gq), d(fp, gq), D(fp, Fp), D(gq, Gq), D(fp, Gq) + D(gq, Fp)
)

≤ 0,

therefore T (d(p, q), d(p, q), 0, 0, 2d(p, q) ≤ 0, that is d(p, q) = 0. It follows that
p = q. �

Corollary 1. Let F, G be mappings of a complete metric space (X, d) into B(X)
such that satisfying :

(iv) T
(

δ(Fx, Gy), d(x, y), D(x, Fx), D(y, Gy), D(x, Gy) + D(y, Fx)
)

≤ 0

for every x, y in X. Then there exists a unique p ∈ X such that {p} = Fp = Gp.

Proof. By Theorem 1, it is enough defined f, g be identity mappings. �

If we combine Theorem 1 with Example 1 we have the following corollary.

Corollary 2. Let F, G be mappings of a complete metric space (X, d) into B(X)
and f, g be mappings of X into itself satisfying :

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,

(ii) The pair (F, f) and (G, g) are weakly compatible,

(iii) δ(Fx, Gy) ≤ α max{d(fx, gy), D(fx, Fx), D(gy, Gy)}
+ β

(

D(fx, Gy) + D(gy, Fx)
)

for every x, y in X, where α, β ≥ 0 and α + 2β < 1. Suppose that one of g(X) or

f(X) is a closed subset of X, then there exists a unique p ∈ X such that {p} =
{fp} = {gp} = Fp = Gp.

Example 3. Let X = [0, 1] endowed with the Euclidean metric d. Define F, G : X →
B(X) and f, g : X → X as follows:

Fx = {1/2}, Gx =







{1/2}, x ∈ [0, 1/2]

(3/8, 1/2], x ∈ (1/2, 1]
,

fx =















1

2
, x ∈ [0, 1/2]

x + 1

4
, x ∈ (1/2, 1]

, gx =







1 − x, x ∈ [0, 1/2]

0, x ∈ (1/2, 1]
.

It is clear that Fx = {1/2} ⊆ g(X) = {0} ∪ [1/2, 1], Gx = (3/8, 1/2] = f(X) and
g(X) is closed subset of X. Now we consider the following cases:

Case 1. If x ∈ [0, 1/2] and y ∈ [0, 1/2], then

δ(Fx,Gy) = 0 ≤
1

3
d(fx, gy).
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Case 2. If x ∈ [0, 1/2] and y ∈ (1/2, 1], then

δ(Fx,Gy) =
1

8
≤

1

3
·
1

2
=

1

3
d(fx, gy).

Case 3. If x ∈ (1/2, 1] and y ∈ [0, 1/2], then

δ(Fx,Gy) = 0 ≤
1

3
d(fx, gy).

Case 4. If x ∈ (1/2, 1] and y ∈ (1/2, 1], then

δ(Fx,Gy) =
1

8
≤

1

3
·
3

8
≤

1

3
d(fx, gy).

Therefore, we obtain

δ(Fx,Gy) ≤
1

3
d(fx, gy)

≤
1

3
max

{

d(fx, gy),D(fx, Fx), D(gy,Gy),
D(fx, Gy) + D(gy,Fx)

2

}

for all x, y ∈ X. That is, the condition (iii) of Theorem 1 is satisfied with

T (t1, . . . , t5) = t1 −
1

3
max

{

t2, t3, t4,
1

2
t5

}

.

Also, the coincidence points of F and f are 1/2 and 1, and it is clear that F and f

are commuting at 1/2 and 1. Similarly, the only coincidence point of G and g is 1/2,

and G and g are commuting at 1/2. Thus F and f as well as G and g are weakly

compatible. Consequently all conditions of Theorem 1 are satisfied and so these mappings

have a unique common fixed point on X. On the other hand, if xn =
1

2
−

1

2n

, so that

δ(Ggxn, gGxn) → 1/8 6= 0 even though Gxn, {gxn} → {1/2}, that is, the mappings G

and g are not compatible. Therefore the fixed point results, which have condition of

compatibility, are not applicable to this example. For example the results in [6], [8]–[10]

and some others.

Acknowledgement. The authors are grateful to the referees for their valuable
comments in modifying the first version of this paper.

REFERENCES

1. I. Altun, H. A. Hancer, D. Turkoglu: A fixed point theorem for multi-maps sa-

tisfying an implicit relation on metrically convex metric spaces. Math. Commun., 11

(2006), 17–23.

2. I. Altun, D. Turkoglu: Some fixed point theorems for weakly compatible multivalued

mappings satisfying an implicit relation. Filomat, 22 (1) (2008), 13–23.

3. N. Chandra, S. N. Mishra, S. L. Singh, B. E. Rhoades: Coincidences and fixed

points of nonexpansive type multi-valued and single-valued maps. Indian J. Pure Appl.

Math., 26 (1995), 393–401.



196 S. Sedghi, I. Altun, N. Shobe

4. M. Imdad, S. Kumar, M. S. Khan: Remarks on some fixed point theorems satisfying

implicit relation. Rad. Math., 11 (2002), 135–143.

5. J. Jachymski: Common fixed point theorems for some families of maps. Indian J.

Pure Appl. Math., 55 (1994), 925–937.

6. G. Jungck: Compatible mappings and common fixed points. Int. J. Math. Math. Sci.,

9 (1986), 771–779.

7. G. Jungck, B. E. Rhoades: Fixed points for set valued functions without continuity.

Indian J. Pure Appl. Math., 29 (3) (1998), 227–238.

8. S. M. Kang, Y. J. Cho, G. Jungck: Common fixed points of compatible mappings.

Int. J. Math. Math. Sci., 13 (1990), 61–66.

9. V. Popa: A general coincidence theorem for compatible multivalued mappings satisfying

an implicit relation. Demonstratio Math., 33 (2000), 159–164.

10. B. E. Rhoades, K. Tiwary, G. N. Singh: A common fixed point theorem for com-

patible mappings. Indian J. Pure Appl. Math., 26 (5) (1995), 403–409.

11. S. Sessa, Y. J. Cho: Compatible mappings and a common fixed point theorem of

change type. Publ. Math. Debrecen, 43 (3-4) (1993), 289–296.

12. S. Sessa, B. E. Rhoades, M. S. Khan: On common fixed points of compatible map-

pings. Int. J. Math. Math. Sci., 11 (1988), 375–392.

13. S. Sharma, B. Desphande: On compatible mappings satisfying an implicit relation

in common fixed point consideration. Tamkang J. Math., 33 (2002), 245–252.

Department of Mathematics, (Received February 6, 2008)
Islamic Azad University-Ghaemshar Branch, (Revised May 22, 2008)
Iran

E–mail: sedghi gh@yahoo.com

Department of Mathematics,
Faculty of Science and Arts,
Kirikkale University,
71450 Yahsihan, Kirikkale,
Turkey

E–mail: ialtun@kku.edu.tr, ishakaltun@yahoo.com

Department of Mathematics,

Islamic Azad University-Babol Branch,

Iran

E–mail: nabi shobe@yahoo.com


