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COLOR-BOUNDED HYPERGRAPHS, III:
MODEL COMPARISON

Csilla Bugtds, Zsolt Tuza

Generalizing previous models of hypergraph coloring — due to
VOLOSHIN, DRGAS-BURCHARDT and LAZUKA, and the present authors — in
this paper we introduce and study the structure class that we call stably
bounded hypergraphs. In this model, a hypergraph is viewed as a six-tuple
H = (X,E,s,t a,b), where s,t,a,b: & — N are given integer-valued func-
tions on the edge set. A mapping ¢ : X — N is a proper vertex coloring if it
satisfies the following conditions for each edge F € £: the number of colors
in E is at least s(F) and at most ¢(E), while the largest number of vertices
having the same color inside F is at least a(E) and at most b(E).

Taking different subsets of {s,t, a,b} (as combinations of nontrivial
conditions on colorability) result in a hierarchy of structure classes with re-
spect to vertex coloring. The main issue of this paper is to carry out a
detailed analysis of how those classes are related. This includes the study
of possible chromatic polynomials and ‘feasible sets’ — that is, the set ®(H)
of integers k such that H has a proper vertex coloring with exactly k£ colors
— with or without assuming that the number of vertices is the same under
the different combinations of color-bound conditions, or restricting the edge
sizes. Furthermore, substantial change is observed concerning the algorith-
mic complexity of recognizing hypergraphs that are uniquely colorable and
O(H) = {|X] - 1}.

1. INTRODUCTION
The main goal of this paper is to describe a unified framework for various

concepts in the coloring theory of hypergraphs, and to study how some of its nat-
urally arising subclasses are interrelated. The model presented here includes, as
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particular cases, the proper (vertex) colorings in the classical sense, moreover the
class of mixed hypergraphs, and also the color-bounded hypergraphs that have been
introduced recently.

We assume throughout that X = {x,...,2,} is a finite vertex set and £ =
{E1,...,En} is the edge set, where each E; is a nonempty subset of X. Under a
given mapping ¢ : X — N — for which we shall use the term vertex coloring, or
simply coloring — a set Y C X is monochromatic if o(y) = o(y') for all y,y’ € Y;
and Y is said to be polychromatic if p(y) # ¢(y') for any two distinct y,y’ €
Y. Introducing the notation ¢(Y) for the image of Y under ¢ (i.e., the set of
colors appearing in Y'), ‘monochromatic’ and ‘polychromatic’ mean |p(Y)| = 1 and
lp(Y)| = |Y|, respectively.

The classical theory of graph and hypergraph coloring proceeds by excluding
monochromatic edges. Around the mid-1990’s, VOLOSHIN [18, 19] introduced the
more general structures of mized hypergraphs, in which some edges — that are called
D-edges — are not allowed to be monochromatic, while some edges — the C-edges —
are not allowed to be polychromatic. A bi-edge is a vertex subset (edge) which is
a C-edge and a D-edge at the same time. In the past decade, the theory of mixed
hypergraphs developed rapidly. For a concise survey on the subject, we refer to
[16]; see also the research monograph [20] and the regularly updated web site [21].

In this paper we view hypergraphs as six-tuples H = (X, &, s, ¢, a, b), where

s,t,a,b: & > N

are given integer-valued functions on the edge set; they will play important role
concerning colorings. To simplify notation, we define

S; 1= S(Ei), ti = t(Ei), a; ‘= a(Ei), bz = b(EZ)
and assume throughout that the inequalities
1<s; <t <|Ei, 1 <a; <b <|E

are valid for all edges F;.

Given a coloring ¢ : X — N and any Y C X, we denote by u(Y) (by 7(Y), re-
spectively) the largest cardinality of a monochromatic (resp. polychromatic) subset
of Y. A stable coloring of ‘H is a mapping such that

si <7(E;) <t and a; < u(E;) <b; for all E, €&

If these conditions are met, we may also call ¢ a proper (vertex) coloring of H.
Hence, the bounds s; and ¢; force that the largest polychromatic subset of each F;
has at least s; and at most ¢; vertices, whereas the largest monochromatic subset
of E; must have at least a; and at most b; colors.

We shall refer to s, t, a, b as color-bound functions, and to s;, t;, a;, b; as color-
bounds on edge E;. In this setting the pair (s, t) restricts the mazimum number
of colors inside an edge, while (a, b) is responsible for the mazimum multiplicity
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of colors on the edge. We introduce the terminology stably bounded hypergraph for
H = (X,&, s, t, a,b); this phrase may be viewed as an alternative rewritten form of
‘(s, t, @, b)-ly bounded’.

Our paper is a continuation of the study of color-bounded hypergraphs, in-
troduced and investigated in [2—4], in which only the functions s, ¢ were consid-
ered as restrictions. In those works, strongly motivated by the paper of DRGAS-
BURCHARDT and LAZUKA [6] (concerning the function s itself) and the concept
of mixed hypergraphs, substantial differences have been pointed out between the
classes of mixed and color-bounded hypergraphs. Though more general than all
those, our present model with its four color-bound functions is still a subclass of
the ‘pattern hypergraphs’ introduced by DVORAK et al. in [7], since in the latter
the collection of feasible coloring patterns may be specified for each edge sepa-
rately. Compared to that, however, our more restrictive conditions allow us to
prove stronger results.

In the present paper we give a detailed analysis of the relations among the
four color-bound functions. The subsets of {s, ¢, a, b}, as combinations of nontrivial
conditions on colorability, form a hierarchy with respect to the strength of models
concerning vertex coloring. In a way, the pair (s, a) is universal; but, interestingly
enough, the partial order among the classes is not always the same, as it may depend
on the aspect under which the allowed colorings are compared. Our results indicate
that concerning the possible numbers of colors on a given number of vertices, the
more restrictive function is the monochromatic upper bound b (cf. Theorems 1 and
2), while with respect to the number of color partitions in general the stronger
restriction is the polychromatic upper bound ¢ (see Section 2.3).

Although the decision problem whether a hypergraph admits any proper col-
oring is NP-complete for all nontrivial combinations of the conditions, nevertheless
some algorithmic questions exhibit further substantial differences among the color-
bound types. This fact is demonstrated concerning unique colorability in Section 3.
On the other hand, there are subclasses of stably bounded hypergraphs that admit
efficient coloring algorithms. Some of them will be discussed in the forthcoming
paper [5].

While revising the manuscript, we have learned that the subclass of hyper-
graphs with bound b was studied previously in [14], [11] and [1], especially con-
cerning approximation algorithms for the minimum number of colors in a proper
coloring.

Further notation and terminology. Conditions of the types s; = 1, t; = | Fy],
a; = 1, and b; = |E;| have no effect on the colorability properties of H, because
they are trivially satisfied in every coloring. For this reason, we may restrict our
attention to the subset of {s, t, a, b} that really means some conditions on at least
one edge. We shall use Capital letters to indicate them. For instance, by an (S, T)-
hypergraph we mean one where a; = 1 and b; = |E;| hold for all edges. In such
hypergraphs it is usually the case — though not required by definition — that there
is at least one edge E; with s > 1 and at least one edge E;» with t;» < |E;»|.
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Otherwise, e.g. if s; = 1 also holds for all ¢, we may simply call it a T-hypergraph.

Colorability, feasible sets, chromatic spectrum. A hypergraph H = (X, &,
s, t, a, b) may admit no colorings at all; this is the case already with the mixed hy-
pergraphs. We call H colorable if it has at least one proper coloring; and otherwise
we say that it is uncolorable.

Assume that H is colorable. By a k-coloring we mean a proper vertex coloring
with ezactly k colors; that is, a coloring ¢ : X — N with |p(X)| = k. (Observe
that this is a slight deviation from standard terminology.) The set

®(H) := {k | H has a k-coloring}

is termed the feasible set of H. Assuming that H is colorable, the largest and
smallest possible numbers of colors in a feasible coloring are termed the upper
chromatic number and lower chromatic number of H, respectively. In notation,

X(H) = min ®(H), X(H) = max ®(H).

Each k-coloring ¢ of H induces a color partition, X = XU - - - UX}, where the
X; are the inclusionwise maximal monochromatic subsets of X in the coloring ¢. We
shall denote by 7 the number of proper color partitions with precisely k& nonempty
classes. By the chromatic spectrum of H we mean the X-tuple (ri,ra,...,7%).
We should mention, however, that in other parts of the literature (see [20]) the
chromatic spectrum is defined as the n-tuple (ry,ra,...,7,). Nevertheless, it is
clear that the two representations are equivalent whenever the number of vertices
is irrelevant; therefore we prefer to keep the shorter notation in the present context.

2. SMALL VALUES AND REDUCTIONS

Here we point out some simple relations among the color-bound functions
s, t, a, b. It will turn out that on 3-uniform hypergraphs without further restrictions,
four different models are equivalent. On the other hand, for hypergraphs with
arbitrary edge sizes, one of them is universal.

Proposition 1. Let FE; be an edge in a hypergraph H = (X, &, s,t,a,b). If |E;| <
Proof. It suffices to observe that any E; has a unique partition into 1 or |E;|
classes, verifying 7(E;) + u(E;) = |E;| + 1 for such trivial partitions; moreover, if
|E;| = 3, then the size distribution in precisely two nonempty partition classes is
uniquely determined as (2,1), so that 7(F;) = u(F;) = 2 in this case. O

Corollary 1. Let E; € £ be an edge with at most three vertices.

1. If |E;| =1, then s; =t; = a; = b; = 1 necessarily holds, and the edge may be
deleted without changing the coloring properties of H.
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2. If |E;| = 2, then between the local conditions the following equivalences are
valid for k=1,2.
(i) 5i=k<:>bi:3—k',
(ii) ai=k&st; =3 —k.
3. If |E;| = 3, then between the local conditions the following equivalences are
valid for k=1,2,3.
An important consequence is that, in the restricted class of 3-uniform hyper-

graphs, each pair in (s, b) X (¢, @) represents any nontrivial combination of s, ¢, a, b
in full generality:

Corollary 2. If each edge of H = (X,&, s, t,a,b) has at most three vertices, then
‘H has an equivalent description as an

o (S, T)-hypergraph,
o (S, A)-hypergraph,
e (T, B)-hypergraph,
e (A, B)-hypergraph.

Proof. Based on Corollary 1, every s-condition and a-condition can be transcribed
to an equivalent b-condition and t-condition, respectively; and vice versa. ([

The coincidences of conditions above do not carry over for edges with |E;| > 3.
Indeed, a 4-element set admits 2-partitions of both types 2 + 2 and 3+ 1 (and the
situation is even worse for larger edges), hence there is no strict relation between
m(E;) and p(E;) in either direction. Nevertheless, the following implications remain
valid for edges of any size, by the pigeon-hole principle.

Proposition 2. Let E; be any edge in a hypergraph H = (X, &, s,t,a,b). Then,
between the conditions the following equivalences are valid:

(i) si=2%0b =|E| -1,
In particular, for mixed hypergraphs we obtain

Corollary 3. Every mized hypergraph is a member of all the four classes of (S,T)-,
(S, A)-, (T, B)-, and (A, B)-hypergraphs at the same time.

Proof. Every C-edge E; can be interpreted as (s;,a;) = (1,2), a D-edge E; cor-
responds to the bounds (s;,a;) = (2,1), whereas a bi-edge E; is equivalent to the
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bounds (s;,a;) = (2,2). This yields membership in (S, A). Transcription to the
other three models can be done via Proposition 2. O

REMARK. Contrary to mixed hypergraphs, in the general model the edges E; of
cardinality 2 with ¢; = 1 or a; = 2 usually cannot be contracted, despite their two
vertices must get the same color in every proper coloring. The reason is that in
(a, b) the multiplicities of colors are of essence. To keep track of them, one would
need to introduce weighted vertices and interpret (a, b) as weighted conditions. We
do not study weighted hypergraphs in the present paper.

2.1. CLASS REDUCTIONS AND COLORABILITY

Some combinations between color-bound conditions can be done; moreover,
some of their combinations always admit a proper coloring. We summarize these
facts as follows.

Table 1

1. Colorable pairs:

e (S, B)-hypergraphs allow every edge to be polychromatic, therefore the
upper chromatic number equals the number of vertices.

e (T, A)-hypergraphs allow every edge to be monochromatic, therefore
the lower chromatic number equals 1.

2. Combinations admitting uncolorability:
These are the sets of color-bound functions intersecting both (S, B) and
(T, A); i.e., the minimal such sets are the pairs (S,T), (S, A), (4, B), and
(T, B). The following operations show that all of them can be reduced to
(S, A).

e b; < |E;| : insert all (b; + 1)-subsets of E; with lower color-bound
s = 2, and omit the condition b; from FE;. This eliminates the function
b.

e t; < |E;| : insert all (t; + 1)-subsets of E; with lower color-bound

a = 2, and omit the condition ¢; from FE;. This eliminates the function
t.

3. Universal classes for colorability problems:
e S-hypergraphs [6] are universal models for n-colorable stably bounded
structures where the question is to determine Y.

e A-hypergraphs are universal models for 1-colorable stably bounded
structures where the question is to determine .

e (S, A)-hypergraphs are universal models for stably bounded structures
where both y and X are of interest.
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Concerning feasible sets, the following assertions are valid.

Proposition 3. If a hypergraph H = (X, &, s, t, a,b) has x(H) =1 or X(H) = | X|,
then its chromatic spectrum is continuous. Moreover, every interval of positive
integers can be realized as the feasible set of hypergraphs with just one edge in each
of the four types (S,T), (S, A), (T, B), and (A, B); and such a realization is possible
even with an S-hypergraph and with a B-hypergraph.

Proof. If x(H) = 1, then we have non-restrictive bounds s; = 1 and b; = |E}]
for all edges E;. Let ¢ be a k-coloring of ‘H with k£ > 1. Taking the union of two
arbitrarily chosen color classes of ¢ as just one new color class, no edge FE; will
have smaller u(FE;) or larger m(E;), hence a proper (k — 1)-coloring is constructed.
Starting from k = Y(H), we obtain that all numbers of colors between 1 and X
admit a proper coloring.

Similarly, for X(H) = |X| we have ¢; = |E;| and a; = 1 for all E;. If p is a
k-coloring of H with k < |X|, then some color class has more than one vertex, and
splitting it into two nonempty classes in an arbitrary way we cannot violate the
conditions s; and b;, so that a proper (k + 1)-coloring is obtained. Starting from
k = x(H), all numbers of colors between x and | X| admit a proper coloring.

In order to construct a hypergraph H = (X, &) with feasible set ®(H) =
{{|p<¥<q}for any given ¢ > p > 1, we let | X| = ¢ that will ensure ¥ = ¢
for both S- and B-hypergraphs. To satisfy the equation xy = p, we may simply
assign s = p to an edge whose cardinality is between p and ¢. In type B, this edge
should have cardinality exactly p, assigned with the color-bound b = 1 that makes
it polychromatic. (I

REMARK 2. Conditions involving S are more flexible than those with B. Namely,
for the types (S,T') and (S, A) we may take s(X) = p with any number n of vertices,
because either of the conditions #X) = g and a(X) = n — g+ 1 yields then Y = ¢,
as the total number of colors cannot be larger than n — a(X) + 1. On the other
hand, concerning the hypergraph H = (X, {X}) the only possible choice for b(X) is
[n/p], which guarantees x = p if and only if (p—1)[n/p] < n—1. Thus, for (T, B)
and (A, B) the set of feasible orders n is precisely |J {n € N|pb—b+1 < n < pb}.
b>1

Proposition 4. For every finite sequence (ra,...,r;) of nonnegative integers with
ri > 0, there exist (S,T)-, (S, A)-, (A, B)—, and (T, B)-hypergraphs whose upper
chromatic number is k and chromatic spectrum is (r1 = 0,ra,..., 7).

Proof. As proved by KRAL’ in [9], every spectrum (rg,...,r)) occurs in non-1-
colorable (i.e., with 7 = 0) mixed hypergraphs. Since every mixed hypergraph
belongs to all of the four types by Corollary 3, the assertion follows. O

Hence, in hypergraphs H belonging to class types other than the trivially
colorable ones which are subsets of {S, B} and {T, A}, it remains a substantial
question to determine the feasible set (7). On the other hand, chromatic spectra
and chromatic polynomials are of interest for trivially colorable classes, too.
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2.2. LARGE GAPS IN THE CHROMATIC SPECTRUM

JIANG et al. constructed in [8] a mized hypergraph on 2k + 4 vertices and
with a gap of size k in the chromatic spectrum, for all £ > 1. This 2k + 4 is the
smallest possible order, what follows from another result of the same paper (though
this consequence is not formulated there explicitly).

In this subsection we extend this result by pointing out that the minimality
of 2k + 4 for a gap of size k remains valid in the more general class of (T, A, B)-
hypergraphs, too. In contrast to this, in [3] the exact minimum for (S, T)-hyper-
graphs has been proved to be k45, and at the end of this subsection we show that
the same is valid for (S, A)-hypergraphs as well.

First, we prove an assertion that we shall use as a lemma but it can be of
interest in itself, too. It contains, as subcases, all the types of (T, B)-, (4, B)-, and
mixed hypergraphs.

Proposition 5. If a (T, A, B)-hypergraph on n vertices has a gap at g, then its
lower chromatic number x is at least 2g —n + 2.

Proof. By definition, there exists an integer j > g + 1 such that the hypergraph
has a coloring ¢ with exactly j colors but there is no proper (j — 1)-coloring.

Suppose first that 25 —2 > n. Then there occur at least 25 —n > 2 singleton
color classes in ¢. Considering two of them, say {z} and {y}, their union yields a
non-feasible (j — 1)-coloring. After the identification of p(z) and ¢(y), however, all
the bounds t; and a; remain fulfilled. Consequently, the obtained (j — 1)-coloring
can be non-feasible only because of an edge FE; containing both vertices z and y
and having bound b; = 1. Thus, = and y must have different colors in every feasible
coloring. For the same reason, any two vertices from the at least 25 — n singletons
are differently colored in any y-coloring, too. This implies x > 25 — n. Due to the
condition j > g + 1, the inequality x > 2g — n + 2 follows.

On the other hand, if 2j — 2 < n, considering the gap at g < j — 1 we obtain
the upper bound 2g — n + 2 < 25 — n < 1, thus the inequality x > 29 —n + 2
automatically holds. (I

We mention the following consequence that was proved for mized hypergraphs
in [8]. Tightness follows from a construction of the same paper.

Corollary 4. If a (T, A, B)-hypergraph is {-colorable and has a gap at g, then it
has at least 2g + 2 — { wvertices.

Theorem 1. If a (T, A, B)-hypergraph has a gap of size k > 1 in its chromatic
spectrum, then it has at least 2k + 4 vertices. Moreover, this bound is sharp; that
is, for every positive integer k there exist mized, (T, B)- and (A, B)-hypergraphs
on |X| = 2k + 4 vertices, whose chromatic spectrum has a gap of size k.

Proof. Suppose that a (T, A, B)-hypergraph has an ¢-coloring and an (¢ + k + 1)-

coloring, but all integers in between are gaps. Then we can apply Proposition 5
with ¢ = £ + k, so that 20 + 2k — n + 2 < x < £ is obtained. Moreover, every
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1-colorable hypergraph has continuous chromatic spectrum, hence ¢ > 2 holds and
the above facts imply that the lower bound n > ¢ + 2k + 2 > 2k + 4 is valid.

To show that the bound is sharp, we consider the construction from [8]. The
hypergraph Hs j3 is defined on the (2k + 4)-element vertex set {z1, z2,a1,a2,...,
ak+1, b1,b2, ..., bgt1}, with the following edges:

o Triples of the form {;,a;,b;} for i =1,2 and for all 1 < j < k+ 1. They are
bi-edges in the mixed hypergraph and have bounds (¢,b) = (2,2) or (a,b) =
(2,2) in the other models.

o Quadruples of the form {a;,a;,b;,0;} for all 1 < i < j < k+ 1, as D-edges,
with bounds (¢,0) = (4,3) or (a,b) = (1, 3).

o Triples of the form {a;, aj, b;} and {a;, b;, b;} for any two distinct indices ¢, j €
{1,2,...,k+1}. They are C-edges or equivalently have bounds (¢,b) = (2, 3)
and (a,b) = (2, 3), respectively.

e The pair {z1, 22} as a D-edge, with bounds (¢,0) = (2,1) or (a,b) = (1,1).

The feasible set of this hypergraph is {2,k + 3}, as it was proved in [8]. This fact
remains valid in all of the three models considered, thus the assertion follows. [

In [3] we proved that (S, T)-hypergraphs can have a gap of size k only if the
number of vertices is at least k + 5, and this bound is tight. Now, we extend the
lower bound of this result to all stably bounded hypergraphs, and show that it is
tight already for (S, A)-hypergraphs.

Theorem 2. If a stably bounded hypergraph has a gap of size k > 1 in its chromatic
spectrum, then it has at least k + 5 vertices. Moreover, this estimate is sharp,
already for the type (S, A); that is, for every positive integer k there exists an
(S, A)-hypergraph on |X| =k + 5 vertices, whose chromatic spectrum has a gap of
size k.

Proof. We have proved in Proposition 3 that if a stably bounded hypergraph has
a 1-coloring or a totally polychromatic n-coloring, then its chromatic spectrum is
continuous. Hence, the only possibility for having a gap of size k£ > 1 on fewer than
k + 5 vertices would be with n = k + 4 and with the feasible set {2, k + 3}.

Assume for a contradiction that this is the case. Because of 2-colorability, the
inequality s; < 2 is valid for every edge E;. Let now ¢ be a coloring with precisely
k+3 =mn—1 colors. Then k + 2 of the color classes (i.e., all but one) in ¢ are
singletons. Taking the union of two arbitrarily chosen 1-element classes, say {z}
and {y}, we get a non-feasible color partition. This change can never decrease the
size of monochromatic subsets or increase the number of distinct colors occurring
inside any edge, therefore all of the bounds a; and t; are kept satisfied.

Hence, there exists an edge E; for which either the bound s; < 2 gets violated,
or its monochromatic subset becomes larger than b;. The former means, however,
that E; becomes monochromatic. That is, we have s; = 2 and F; = {z,y}, hence
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x and y are colored differently in every feasible coloring. On the other hand, since
o(z) # (y), in the modified coloring the color of {z,y} does not occur on any
other vertex. Hence, if b; gets violated, then b; = 1 must hold, and again we
can conclude that x and y are colored differently in every feasible coloring. This
property is valid for any two of the k + 2 > 3 singletons, what contradicts to
the assumption that the hypergraph is 2-colorable. Hence, there cannot exist any
color-bounded hypergraphs with a gap of size k on fewer than k + 5 vertices.

To show that a gap of size k is realizable on k + 5 vertices, we refer to the
corresponding construction from [3], that has feasible set {3,k + 4}. The (S,T)-
hypertree described there has edges only of size 4, with bounds (s,t) = (3, 3), what
can be interpreted with bounds (s,a) = (3,2) in an equivalent way. Hence, an
(S, A)-hypergraph with the required properties is obtained. (I

Theorems 1 and 2 together characterize the minimum order of a hypergraph
of any nontrivial type for a gap of size k: the minimum is k£ + 5 if and only if the
type contains (S,T') or (S, A), and it is 2k + 4 if and only if it does not contain S
but contains B and at least one of T" and A. In any other case, the spectrum is
gap-free.

2.3. COMPARISON OF THE SETS OF CHROMATIC POLYNOMIALS

We have already seen that any type of nontrivial combinations of s, ¢, a, b can
be expressed with (s, @) on applying part 2 of Table 1, if no structural conditions
are imposed; and, furthermore, for 3-uniform hypergraphs each pair in (s, b) X (¢, a)
would work equally nicely. Here we prove that this latter equivalence is not valid
in general.

To formulate observations providing a more detailed information, let us de-
note by Px,y and Px the sets of chromatic polynomials belonging to the classes of
hypergraphs of type (X,Y") and of type X, respectively, for any X,Y € {S,T, A, B}.
Similarly, the set of chromatic polynomials appearing in the case of mixed hyper-
graphs will be denoted by P,,.

Theorem 3. For the sets of chromatic polynomials belonging to (S, A)-, (A, B)-,
(8,T)-, (T, B)-, and mized hypergraphs, the relations Ps.a = Pap 2 Psr =
Pr,B = Pm hold.

Proof.

1. According to Corollary 3, each mixed hypergraph has a chromatic equivalent
in each of those four stably bounded subclasses. Thus, the set P, is contained
in each of Pg 4, Pa,B, Ps,r, and Pr p.

2. On the other hand, as it has been shown, the bound b; < |E;| can be replaced
by some (b;+1)-element D-edges, whilst the elimination of the bound ¢; < |E;|
can be done by inserting some (t; + 1)-element C-edges. Therefore, every
(T, B)-hypergraph has a chromatically equivalent mixed hypergraph (on the
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same vertex set). Taking into consideration the observation 1, the equality of
Pr g and P, is obtained.

3. It was proved in [3] that Psp = P,,. It worth noting that there exists an
(S, T)-hypergraph with no chromatic equivalent mixed hypergraph on the
same number of vertices. For instance, due to [3], there exists an (S,T)-
hypergraph with a gap of size 2 on seven vertices, whilst in the case of mixed
hypergraphs it needs at least eight vertices, by a result of [8].

4. By the elimination of ¢, the (S,T)-hypergraphs can be modeled in (S, A),
hence Ps 4 2 Psr. We are going to show that the sets of chromatic spec-
tra, and consequently also the chromatic polynomials, of (S, A)- and (S,T)-
hypergraphs are not equal.

Let H, o have four vertices and just one 4-element edge with bounds a = 3
and s = 1. Obviously, 71 = 1 and ro = 4. On the other hand, it was proved
in [3] that in 1-colorable (S, T')-hypergraphs the value of 7o always is of the
form 277! — 1. Since this property is not valid for Hs 4, it cannot have a
chromatically equivalent (S, T)-hypergraph.

5. Since any chromatic spectrum with 7, = 0 belongs to some mixed hyper-
graphs, the same holds for (S, A)- and (A, B)-hypergraphs, too. Thus, a dif-
ference between Pg 4 and P4 g might occur only on hypergraphs with r; = 1.
The assumption of 1-colorability in an (S, A)-hypergraph implies that every
edge E; has bounds (s;,a;) = (1,a;), whereas in an (A, B)-hypergraph it im-
plies (a;,b;) = (a4, |E;|) for every edge. These two color-bound conditions
clearly are equivalent on each edge. Hence, the possible chromatic spectra
and consequently the chromatic polynomials are the same: Pg a4 = Pa,B.

Nevertheless, there exist some (.5, A)-hypergraphs not having chromatic equiv-
alent (A, B)-hypergraphs on the same number of vertices. Similarly to the ex-
ample in step 4 of the proof, one can see that there exists an (S, A)-hypergraph
on seven vertices with feasible set {3,6}, but to generate this feasible set in
(A, B)-hypergraphs needs at least eight (in fact, at least nine) vertices. O

As regards modeling with the same number of vertices, the previous proof
yields the following observation.

REMARK 3. Every mixed hypergraph has a chromatically equivalent (T, B)-hyper-
graph such that their vertex sets are of the same cardinality, and vice versa. This
stronger condition does not hold for any other pairs of the models listed above.

We close this subsection with supplements of Theorem 3 regarding other types
of stably bounded hypergraphs.

Proposition 6. Concerning the possible chromatic polynomials of S-, T-, A-, B-,
C- (‘mized’, without D-edges) and D- (classical) hypergraphs the following relations
hold:
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1. P 2 Ps =Psp 2 Pp=Ps,

2. Ps,a 2 Pa=Par 2 Pc = Pr,

3. Pm and P4 are incomparable.
Proof.

1. Every D-edge E; can be interpreted equivalently with bound b, = |E;| — 1,
whilst a bound b; < |E;| can be replaced by some (b; + 1)-element D-edges,
therefore Pp = Pp holds.

Every D-edge evidently means an edge with bound s = 2, hence Pp C Py is
clear. On the other hand, let us consider the S-hypergraph H = (X, {X}, s)
with | X| = 5 vertices and with color-bound s(X) = 3. Its chromatic spectrum
is (0,0,25,10,1). Assuming a D-hypergraph with this spectrum, it should
have five vertices and each of its 3-partitions should yield a proper coloring.
In particular, for any three vertices there should exist a coloring where they
get the same color, implying that there can occur D-edges only of sizes 4
and 5. Consequently, the 2-partitions with color classes of size 2 and 3 are
not forbidden, what contradicts ro = 0. Therefore, this S-hypergraph has no
equivalent D-hypergraph, implying Ps 2 Pp.

By the elimination of b, we can transform the structures of type (S, B) to
type S, hence Ps = Pg p. It is also clear that Ps C Psr = Py, and that
mixed hypergraphs having gaps in their chromatic spectra cannot be modeled
in S-hypergraphs. That is, Pg ; P is obtained.

2. Any C-edge E; can be considered as an edge with bound ¢; = |E;| — 1, whilst
any bound t; < |E;| can be expressed by C-edges, hence Pe = Pr.

By eliminating ¢, every (A,T)-hypergraph can be rewritten only with the
bound a, thus P4 = P4 1. Moreover Ps 4 D Py trivially holds.

To show that there exist A-hypergraphs having no chromatically equivalent
C-hypergraphs, we recall the example from step 4 in the proof of Theorem 3.
This (S, A)-hypergraph can be considered as just an A-hypergraph, and since
it has no equivalent of type (S,T), the same is true for mixed- and C-hyper-
graphs, too. Consequently, P4 2 Pc, and because of the 1-colorability of
every A-hypergraph, Ps 4 # P4 is valid as well.

3. By the previous example there exist A-hypergraphs that have no equivalent
mixed hypergraphs whereas mixed hypergraphs admitting no 1-coloring can-
not be equivalent to any A-hypergraphs. O

Proposition 7. Concerning the possible chromatic polynomials of stably bounded
hypergraphs involving at least three types of conditions, the following equations hold :

1. Psr,a,B="Ps a5 =Psar="Ps,a,

2. Pa,,r = Pa,B = Ps,a,
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3. PS,T,B = PS,T-
Proof. The reductions described in part 2 of Table 1 yield:

e The color-bound function ¢ can be expressed by the function a. Consequently,
if a type contains T' and A together, then omitting T' the set of possible
chromatic polynomials does not change.

e Similarly, the function b can be reduced to s, therefore in the presence of S
the cancelation of B cannot make a change in the set of possible chromatic
polynomials.

These observations immediately imply the statements listed above, except for the
last equation in part 2, what has been proved in Theorem 3. O

3. COMPLEXITY OF TESTING COLORABILITY

In this section we investigate the time complexity of the following two algo-
rithmic problems.

COLORABILITY

Instance: A hypergraph H of a given type.

Question: Is H colorable?
UNIQUE k-COLORABILITY

Instance: A hypergraph H of a given type, together with a proper k-coloring .

Question: Does H admit any proper coloring other than ¢ ?

For the former, we simply extend the NP-hardness result of [4] from (S, T)-
hypergraphs to all nontrivial combinations of the color-bound functions. On the
other hand, the situation with the latter problem is more interesting. We choose
the value & = n — 1 and prove that two of the non-trivial pairs, namely those
containing S, lead to intractability; but the other two, containing B, admit a good
characterization and polynomial-time algorithms.

In general, it should be noted that COLORABILITY clearly belongs to NP,
whereas UNIQUE k-COLORABILITY is in co-NP. Moreover, since a hypergraph on n
n
2
k=n—1 (and also if k is as large as n minus a constant) it does not change the
complexity status of the problem if a k-coloring is not given in the input.

vertices cannot have more than ( ) proper (n — 1)-colorings, we can see that for
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3.1. COLORABILITY OF 3-UNIFORM HYPERGRAPHS

It was first observed in [17] that the recognition problem of colorable mixed
hypergraphs is NP-complete in general, and also when restricted to 3-uniform mixed
hypergraphs. There are some important classes with a nice structure, however, that
admit efficient algorithms.

A hypergraph H = (X, £) is called a hypertree if there exists a tree graph T'
on the same vertex set X as H, such that each edge E; € £ induces a subtree in T'.
In [15] a simple necessary and sufficient condition was given for the colorability of
mized hypertrees, from which an efficient algorithm is obtained, too.

On the other hand, we have shown in [4] that the colorability of 3-uniform
(S, T)-hypertrees is NP-complete. We have also seen in Corollary 2 that every
3-uniform stably bounded hypergraph has equivalent representations with all the
types of (S,T)-, (S, A)-, (T, B)-, and (A, B)-hypergraphs, and those can be con-
structed in linear time. In this way, an input of any of these types can efficiently
be transformed to an (S,T)-hypergraph. Consequently, the result of [4] can be
extended as follows.

Theorem 4. The COLORABILITY problem is NP-complete on each of the following
classes of hypergraphs:

e 3-uniform T)-hypertrees,
A)

o 3-uniform -hypertrees,

(S,
(S
o 3-uniform (T, B)-hypertrees,
o 3-uniform (A, B)-hypertrees.

It is worth comparing Theorem 4 with the following results: there are linear-
time algorithms for deciding whether a mized hypertree is colorable, and also for
finding a proper coloring if there exists one [15], whereas determining the upper
chromatic number of a mixed hypertree without edges larger than three is NP-
complete [10].

Let us note further that NP-completeness remains valid if we assume that
the host tree is a star. On the other hand, it will be proved in the forthcoming
paper [5] that 3-uniform stably bounded interval hypergraphs admit a linear-time
colorability test and a linear-time coloring algorithm, too.

3.2. UNIQUELY (n—1)-COLORABLE (S, T)- AND (S, A)-HYPERGRAPHS

Although it is hard to test whether an unrestricted mixed hypergraph is
uniquely colorable [17], this is not the case if X is very large. For the latter case,
NicuriTsa and Voss [12] described a characterization of uniquely (n—1)-colorable,
and also of uniquely (n — 2)-colorable mixed hypergraphs.
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In sharp contrast to this, we have proved in [3] that the recognition of uniquely
(n — 1)-colorable (S, T)-hypergraphs is hard. Here we show how the construction
can be extended to (S, A)-hypergraphs.

Theorem 5. The UNIQUE (n—1)-COLORABILITY problem is co-NP-complete on
(S, A)-hypergraphs.
Proof. As we have already mentioned, membership in co-NP is clear. To prove
hardness, let us recall from [3] the reduction for (S, T')-hypergraphs, from the prob-
lem of determining the chromatic number of Steiner triple systems.

PHELPS and RODL proved in [13] that it is NP-complete to decide whether
a STEINER triple system — viewed as a 3-uniform D- (classical) hypergraph — is
colorable with 14 colors. Given an input STEINER triple system & = ST'S(n —2) =
(X, B) of order n — 2 with vertex set X = {x1,..., 2,2} and edge set B, an (S,T)-
hypergraph H = (X', &, s, t) is constructed as follows. We set X' = X U {z1, 22},
where 21, zo are two new vertices, and consider the following edges with respective
color-bounds:

o B'=BU{z,2} with s(B’) =4 and ¢(B’) = 5, for all blocks B € B;

o W' =WU{z, 22} with s(W’) =1 and t(W’) = 16, for all 15-element subsets
of X;

o ¢;; ={x;, 2} with s(e; ;) = t(e;;) =2,foralll <i<n-—2and j=1,2.

In this (S,T)-hypergraph, every ¢; is either |E;| or |E;| — 1. Hence, it is easy
to eliminate ¢ along the lines of Proposition 2 and obtain an equivalent (S, A)-
hypergraph: we simply define

a(B') =1, aW') =2, ale; ;) =1

for all edges B',W',e; ; € £. From the argument in [3] it follows that H is not
uniquely (n — 1)-colorable if and only if S has a proper coloring with at most 14
colors; and certainly the same holds for the derived (S, A)-hypergraph, too. Thus,
co-NP-hardness follows. o

3.3. UNIQUELY (n—1)-COLORABLE (T, B)- AND
(A, B)-HYPERGRAPHS

In this subsection we characterize the uniquely (n — 1)-colorable (7, B)-
and (A, B)-hypergraphs. In the models (S, A) and (S,7T) studied in the previ-
ous subsection, the decision problem of unique (n — 1)-colorability was proved to
be co-NP-complete. In contrast to this, the characterization presented below yields
polynomial-time algorithms for (7, B)- and (A, B)-hypergraphs.

Before the characterization, let some terminology be introduced:

o {z,y} is called Bj-edge if « and y are contained in a common hyperedge F;
having bound b; = 1. (This corresponds to a graph-edge in the usual sense.)
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e E; is called By-edge if b; = 2.
e F; is called C-edge if t; = |E;| — 1.

Concerning a given (7', B)-hypergraph, the set of C-, B;- and By-edges will
be denoted by C, By and By, respectively. As a side-product of the characterization
theorem, it will turn out that if an edge has bound b; > 3, then the exact value of
b; has no influence on unique (n — 1)-colorability.

Theorem 6. A (T, B)-hypergraph H = (X, &, t,b) on |X| = n vertices is uniquely
(n — 1)-colorable if and only if the following conditions hold:

Ei| —t;) =1.
() max(]E;| —t:)

(B) The set C* := () C contains at least two vertices and induces a complete
cecC
B1-graph minus one Bi-edge.

Moreover, denoting by y1 and yo the vertices from the missing B -edge,

() X \{wy1,y2} is a complete Bi-graph.

(0) For each vertex x € X \ C*, at least one of the relations {x,y1} € B,
{z,y2} € By and {z,y1,y2} C F; € By holds.

(e) For each pair of vertices x;,xr € X \ C*, if {x;,xr} intersects every C-edge,
then either there exist Bi-edges {z,x;} and {z,x1} for a z € {y1,y2}, or
there exist Bi-edges {z,y1} and {z,y2} for a z € {z;,x}.

Proof. Consider a uniquely (n — 1)-colorable (7', B)-hypergraph H = (X, &, ¢, b).
Since it admits an (n — 1)-coloring, where each edge has at least |E;| — 1 colors,
t; > |E;] — 1 holds. On the other hand, since the n-coloring is not feasible, there is
some hyperedge with bound ¢; = |E;|—1. Consequently, we have Emzé)gc(|El|—tZ) =1,

according to ().

Let ¢ be a proper (n — 1)-coloring, and assume without loss of generality
that its color classes are {z1},{z2},...,{zn_2}, and {y1,y2}. Every C-edge has to
involve vertices with a common color by ¢, moreover the color class {y1,y2} cannot
be a Bi-edge, therefore:

(B1) {y1, 92} € C* and {y1,y2} ¢ B

Taking the union of any two color classes from ¢, the obtained (n—2)-coloring
is not feasible, what can be caused only by breaking some bound b;. We are going
to analyze the various vertex partitions with n — 2 classes.

o The contraction of any two singletons {x;} and {x} is forbidden, hence there
exists an edge E; D {z;,z} with bound b; = 1. That is, {z;,zx} € By for
every 1 < j <k <n — 2, so that () holds.
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o The contraction of any singleton {z;} and {y1,y2} is also forbidden by some
bound b;, consequently at least one of the alternatives from (J) holds.

e Any (n — 2)-partition containing the two non-singleton color classes {z;,y1}
and {xy, y2} is non-feasible, hence either a C-edge omits both z; and zj, (since
it includes both y; and y2), or there occur By edges in both sets {{z;,y1},
{zk,y2}} and {{z;,y2}, {zk,y1}}. This means, the implication of (¢) is valid.

By assumption, ¢ is the unique coloring of H; thus, the coloring with single-
tons and the only two-element color-class {z;, y } is non-feasible for all 1 < j < n—2
and 1 < k < 2. If z; belongs to each C-edge, the bounds t; are fulfilled, hence in
this case there surely occurs {z;,yx} as a Bi-edge:

(B2) If x;€C* then {zjyi}eBi and {z;,y2} € B hold.

The properties (81), (B2) and () together ensure the existence of a complete
Bi-graph minus one Bi-edge on the intersection of C-edges, implying that (3) is
fulfilled, too.

Now, assume a hypergraph H satisfying the conditions () — (€) of the theo-
rem. Unique (n — 1)-colorability is verified as follows:

e By the requirement (), the hypergraph admits no n-coloring.

e Cousider the (n — 1)-coloring ¢, where the only monochromatic vertex pair is
{y1,y2}. According to (8), both y; and y, are contained in each C-edge, and
hence, due to () all the bounds from ¢ are satisfied. Since {y1,y2} ¢ B, every
hyperedge F; containing both y; and ys, has bound b; > 2, whilst each of the
remaining hyperedges involves no monochromatic vertex pair. Therefore, all
bounds from b are fulfilled, the color partition {z1}, {za}, ..., {xn-2}, {y1, 2}
is feasible.

e According to (v):

(x) There is no feasible partition with a color class containing both x; and
g (forall 1 <j<k<n-2).

Thus, the only possibility for a second (n — 1)-coloring would be a partition
with 2-element color class {z;, yx} (for some 1 < j <n—-2and 1<k <2).
But if x; € C*, there is contained a forbidden Bi-edge due to (3), whilst
if x; ¢ C*, then some forbidden polychromatic C-edge would arise. Conse-
quently, no (n — 1)-coloring different from ¢ can be feasible.

e To prove that no (n — 2)-colorings exist:

(#x) There is no feasible partition containing {x;,y1,y2} as a color class.
If x; € C*, the class contains two forbidden Bi-edges, due to (5). And
if z; ¢ C*, the property (0) ensures that there occurs either a forbidden
Bi-edge in the 3-element color class, or this class is involved in a By-edge.
All these cases are impossible.
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(x % %) The pairs {z;,y1} and {x,y2} cannot be color classes simultaneously.
Such a coloring is trivially non-feasible if there exists a C-edge containing
neither x; nor xy. Also, if at least one of the vertices z; and =z} is
contained in C*, the partition is forbidden by a Bi-edge according to (3).
In the third case, when all C-edges meet {z;,zs} but their intersection
doesn’t, the conditions of (¢) are satisfied, hence its conclusion excludes
the feasibility of this partition.

The claims (x), (xx) and (x*x) together imply that the hypergraph H admits
no (n — 2)-coloring.

e Because of (x), the vertices 1, %2, . .., Zn_2 have mutually distinct colors in
every feasible coloring, therefore H admits no coloring with fewer than n — 2
colors.

Thereupon, the hypergraph is uniquely (n — 1)-colorable, and this completes
the proof. O

There is no restriction for the exact value of bounds b; > 3 in the characteri-
zation, therefore we immediately get the following corollary:

Corollary 5. Let H and H' be (T, B)-hypergraphs on n vertices, and suppose
that H' can be obtained from H by replacing each bound b; > 3 with some bound
3 < b, < |E;|. Then M is uniquely (n — 1)-colorable if and only if so is H'.
In particular, concerning unique (n — 1)-colorability, H can be reduced to a T-
hypergraph supplemented with some B1- edges and 3-element Ba-edges, that is, with
a classical (D-) hypergraph of rank at most three.

Except for the first property («), the above characterization gives conditions
only for the color-bound function b and for the edges having bound ¢; = |E;| — 1.
Since the restriction maxpg,ce (|Ei| — t;) = 1 can be equivalently expressed with
the bound a, we get an analogous characterization for uniquely (n — 1)-colorable
(A, B)-hypergraphs, too. The terms By and Bs are used as above; C-edge means a
hyperedge E; with bound a; = 2.

Theorem 7. An (A, B)-hypergraph H = (X,&, a,b) with |X| = n vertices is
unique (n — 1)-colorable if and only if the following conditions hold:

(a') max a; = 2.

(B) The set C* := () C contains at least two vertices and induces a complete
B -graph mz’nuscoizce Bi-edge.
Moreover, denoting by y1 and yo the vertices of the omitted Bi-edge,

(v) X\ {y1,y2} is a complete By-graph.

(0) For each vertex x € X \ C*, at least one of the relations {x,11} € B,
{z,y2} € By and {x,y1,y2} C E; € By holds.
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(€) For each pair of vertices xj,xr € X\ C*, if {x;, a1} intersects every C-edge,
then either there exist Bi-edges {z,x;} and {z,x,} for some z € {y1,y2}, or
there exist Bi-edges {z,y1} and {z,y2} for some z € {z;,x1}.

Proof. If the condition (') is valid for a given (A, B)-hypergraph, we can replace
each bound a; = 2 by t; = |E;| — 1, whilst the non-restricting a; = 1 can be
rewritten as t; = |E;|, and we get a chromatically equivalent (T, B)-hypergraph on
the same vertex set. The obtained (T, B)-hypergraph is uniquely (n—1)-colorable if
and only if so is the original (A, B)-hypergraph. Also, the Bi-, Bo- and C-edges are
the same, hence in this case the conditions (a’)—(e) give an exact characterization
for the (A, B)-hypergraph.

On the other hand, if the condition («/) does not hold, then either Y < n—1
or X = n or the hypergraph is uncolorable, so it is not uniquely (n — 1)-colorable
in either case. Hence, (') is indeed necessary for unique (n — 1)-colorability. O

As it was our purpose, the characterization theorems make it possible to
design polynomial-time algorithms for testing unique (n — 1)-colorability in the two
hypergraph classes in question. As a matter of fact, on the one hand it is obvious
that the condition a; < 2 is necessary for unique (n — 1)-colorability in every stably
bounded hypergraph; while, on the other hand, the proof of Theorem 7 shows that
if this condition holds, then the color-bound function a can completely be replaced
with a suitably chosen t. Thus, the following more general result is obtained.

Theorem 8. The decision problem UNIQUE (n—1)-COLORABILITY can be solved
in polynomial time for (T, A, B)-hypergraphs.
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