INEQUALITIES INVOLVING INVERSE CIRCULAR AND INVERSE HYPERBOLIC FUNCTIONS

Edward Neuman

Inequalities connecting inverse circular and inverse hyperbolic functions are established. These results are otained with the aid of an elementary transcendental function which belongs to the family of R-hypergeometric functions discussed in detail in CARLSON's monograph [2].

1. INTRODUCTION AND NOTATION

In this paper we offer several inequalities involving inverse circular and inverse hyperbolic functions. The main results are derived from the inequalities satisfied by the R-hypergeometric function $R_{C}(\cdot, \cdot)$. Let $x \geq 0$ and $y>0$. Following [2]

$$
\begin{equation*}
R_{C}(x, y)=\frac{1}{2} \int_{0}^{\infty}(t+x)^{-1 / 2}(t+y)^{-1} \mathrm{~d} t \tag{1.1}
\end{equation*}
$$

It is well-known that $R_{C}(\lambda x, \lambda y)=\lambda^{-1 / 2} R_{C}(x, y)(\lambda>0)$, i.e., R_{C} is a homogeneous function of degree $-1 / 2$ in its variables and also that $R_{C}(x, x)=x^{-1 / 2}$ and

$$
\begin{equation*}
R_{C}(0, y)=\frac{\pi}{2 \sqrt{y}} \quad(y>0) \tag{1.2}
\end{equation*}
$$

For later use let us record the following formula

$$
R_{C}(x, y)= \begin{cases}(y-x)^{-1 / 2} \arccos (x / y)^{1 / 2}, & x<y \tag{1.3}\\ (x-y)^{-1 / 2} \operatorname{arccosh}(x / y)^{1 / 2}, & x>y\end{cases}
$$

[^0](see $[\mathbf{2},(6.9-15)]$). Other inverse circular and inverse hyperbolic functions also admit representations in terms of the R_{C} function [2, Ex. 6.9-16]
\[

$$
\begin{align*}
\arcsin x & =x R_{C}\left(1-x^{2}, 1\right), & & |x| \leq 1 \tag{1.4}\\
\arctan x & =x R_{C}\left(1,1+x^{2}\right), & & x \in \mathbb{R} \tag{1.5}\\
\operatorname{arcsinh} x & =x R_{C}\left(1+x^{2}, 1\right), & & x \in \mathbb{R} \tag{1.6}\\
\operatorname{arctanh} x & =x R_{C}\left(1,1-x^{2}\right), & & |x|<1 \tag{1.7}
\end{align*}
$$
\]

Bounds for the inverse circular and inverse hyperbolic functions can be obtained using the following inequalities

$$
\begin{equation*}
\frac{3}{x_{n}+2 y_{n}} \leq R_{C}\left(x^{2}, y^{2}\right) \leq\left(x_{n} y_{n}^{2}\right)^{-1 / 3}, \quad n \geq 0 \tag{1.8}
\end{equation*}
$$

(see $\left[\mathbf{5},(3.10)\right.$ and (2.2)]) where the sequences $\left\{x_{n}\right\}_{0}^{\infty}$ and $\left\{y_{n}\right\}_{0}^{\infty}$ are generated using the Schwab-Borchardt algorithm

$$
x_{0}=x, y_{0}=y, x_{n+1}=\left(x_{n}+y_{n}\right) / 2, y_{n+1}=\sqrt{x_{n+1} y_{n}}, n=0,1, \ldots
$$

(see [1], [2]). It has been shown in $[\mathbf{5}, 3.3]$ that the sequences $\left\{3 /\left(x_{n}+2 y_{n}\right)\right\}_{0}^{\infty}$ and $\left\{\left(x_{n} y_{n}^{2}\right)^{-1 / 3}\right\}_{0}^{\infty}$ converge monotonically to the common limit $R_{C}\left(x^{2}, y^{2}\right)$. It is worth mentioning that CARLSON's inequalities

$$
\frac{6(1-x)^{1 / 2}}{2 \sqrt{2}+(1+x)^{1 / 2}}<\arccos x<\frac{\sqrt[3]{4}(1-x)^{1 / 2}}{(1+x)^{1 / 6}}, \quad 0<x<1
$$

(see, e.g., $[\mathbf{4}, 3.4 .30]$) follow from (1.8) with $n=1$ and (1.3) used with $x:=x^{2}$ and $y=1$. Lower bounds for the function $\arcsin x$ (see $[4,3.4 .31]$) can be derived using the first inequality in (1.8) with $n=0, n=1$ and $x_{0}=\left(1-x^{2}\right)^{1 / 2}$ followed by application of (1.4). We omit further details.

For later use, let us record three inequalities

$$
\begin{gather*}
y\left(R_{C}\left(y^{2}, x^{2}\right)\right)^{-1} \leq\left(R_{C}\left(x^{2}, y^{2}\right)\right)^{-2} \leq \frac{1}{2}\left(\left(R_{C}\left(y^{2}, x^{2}\right)\right)^{-2}+y^{2}\right) \tag{1.9}\\
\left(R_{C}\left(x^{2}, y^{2}\right)\right)^{2} \leq \frac{R_{C}(y, A)}{A \sqrt{y}} \tag{1.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(R_{C}(x, A)\right)^{2} \leq R_{C}\left(y^{2}, x^{2}\right) \quad(A=(x+y) / 2) \tag{1.11}
\end{equation*}
$$

which have been established in [6, Theorem 3.1].
The main results of this note are contained in the next section.

2. MAIN RESULTS

Our first result reads as follows.
Theorem. The following inequalities

$$
\begin{equation*}
\left(\frac{\arcsin x}{x}\right)^{2} \leq \frac{\operatorname{arctanh} x}{x} \leq\left(\frac{\arcsin x}{x \sqrt{1-x^{2}}}\right)^{1 / 2}, \quad(|x|<1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\operatorname{arcsinh} x}{x}\right)^{2} \leq \frac{\arctan x}{x} \leq\left(\frac{\operatorname{arcsinh} x}{x \sqrt{1+x^{2}}}\right)^{1 / 2}, \quad(x \in \mathbb{R}) \tag{2.2}
\end{equation*}
$$

hold true. Inequalities (2.1) and (2.2) become equalities if $x=0$.
Proof. For the proof of inequalities (2.1) we shall employ the following one

$$
\begin{equation*}
R_{C}^{2}\left(x^{2}, y^{2}\right) \leq \frac{R_{C}\left(y^{2}, x^{2}\right)}{y} \leq \frac{1}{y}\left(\frac{R_{C}\left(x^{2}, y^{2}\right)}{x}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

The first inequality in (2.3) follows from the first inequality in (1.9) while the second one is obtained from the first inequality by interchanging x with y, i.e., by letting $x:=y$ and $y:=x$. Substituting $x^{2}:=1-x^{2}$ and $y=1$ in (2.3) we obtain the desired result using (1.4) and (1.7). In order to prove the inequalities (2.2) it suffices to use (2.3) with $x^{2}:=1+x^{2}$ and $y=1$ followed by application of (1.6) and (1.5).

Companion inequalities to (2.1) and (2.2) are contained in the following.
Theorem 2. Let $|x|<1$. Then

$$
\begin{equation*}
\left(\frac{\operatorname{arctanh} u}{u}\right)^{2} \leq \frac{\arcsin x}{x} \leq\left(\frac{\operatorname{arctanh} u}{u\left(1-u^{2}\right)}\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

where $u=\sqrt{\frac{1}{2}\left(1-\sqrt{1-x^{2}}\right)}$. If $x \in \mathbb{R}$, then

$$
\begin{equation*}
\left(\frac{\arctan v}{v}\right)^{2} \leq \frac{\operatorname{arcsinh} x}{x} \leq\left(\frac{\arctan v}{v\left(1+v^{2}\right)}\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

where $v=\sqrt{\frac{1}{2}\left(\sqrt{1+x^{2}}-1\right)}$. Equalities hold in (2.4) and (2.5) if $x=0$.
Proof. There is nothing to prove when $x=0$. Since all members of (2.4) and (2.5) are even functions in x, we will always assume that $x>0$. Inequalities (2.4) and (2.5) follow easily from the following one

$$
\begin{equation*}
\left(R_{C}(x, A)\right)^{2} \leq R_{C}\left(y^{2}, x^{2}\right) \leq\left(\frac{R_{C}(x, A)}{A \sqrt{x}}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

where $A=(x+y) / 2$ is the arithmetic mean of two positive numbers x and y. The first inequality in (2.6) is (1.11) while the second one follows from $(1,10)$ after interchanging x with y. Letting $y^{2}=1-x^{2}$ and $x=1$ in (2.6) we obtain

$$
\left(R_{C}(1, A)\right)^{2} \leq R_{C}\left(1-x^{2}, 1\right) \leq\left(\frac{R_{C}(1, A)}{A}\right)^{1 / 2}
$$

where $A=\frac{1}{2}\left(1+\sqrt{1-x^{2}}\right)$. Writing $A=1-u^{2}$ we obtain

$$
\left(R_{C}\left(1,1-u^{2}\right)\right)^{2} \leq R_{C}\left(1-x^{2}, 1\right) \leq\left(\frac{R_{C}\left(1,1-u^{2}\right)}{1-u^{2}}\right)^{1 / 2}
$$

Application of (1.4) and (1.7) completes the proof of (2.4). Inequalities (2.5) can be established in an analogous manner. We use (2.6) with $y^{2}=1+x^{2}, x=1$ to obtain

$$
R_{C}^{2}\left(1,1+v^{2}\right) \leq R_{C}\left(1+x^{2}, 1\right) \leq\left(\frac{R_{C}\left(1,1+v^{2}\right)}{1+v^{2}}\right)^{1 / 2}
$$

Making use of (1.5) and (1.6) we obtain the desired result.
Our next result reads as follows.
Theorem 3. The following inequalities

$$
\begin{array}{ll}
\left(\frac{\arcsin x}{\operatorname{arctanh} x}\right)^{2}+\left(\frac{\arcsin x}{x}\right)^{2} \geq 2, & (|x|<1) \\
\left(\frac{\operatorname{arcsinh} x}{\arctan x}\right)^{2}+\left(\frac{\operatorname{arcsinh} x}{x}\right)^{2} \geq 2, & (x \in \mathbb{R}) \\
\left(\frac{\arccos x}{\operatorname{arccosh}(1 / x)}\right)^{2}+\left(\frac{\arccos x}{\sqrt{1-x^{2}}}\right)^{2} \geq 2, & (|x|<1, x \neq 0) \tag{2.9}
\end{array}
$$

and

$$
\begin{equation*}
\left(\frac{\operatorname{arccosh} x}{\arccos (1 / x)}\right)^{2}+\left(\frac{\operatorname{arccosh} x}{\sqrt{x^{2}-1}}\right)^{2} \geq 2, \quad(|x| \geq 1) \tag{2.10}
\end{equation*}
$$

are valid. Inequalities (2.7) and (2.8) become equalities if $x=0$. Equalities hold in (2.9) and (2.10) if $x=1$.

Proof. Inequalities (2.7)-(2.19) can be regarded as special cases of the inequality

$$
\begin{equation*}
\left(R_{C}\left(x^{2}, y^{2}\right)\right)^{2}\left(R_{C}^{-2}\left(y^{2}, x^{2}\right)+y^{2}\right) \geq 2 \quad(x>0, y>0) \tag{2.11}
\end{equation*}
$$

which follows from the second inequality in (1.9). Equality holds in (2.11) if $x=y$. In order to prove (2.7) we put $x^{2}:=1-x^{2}$ and $y=1$ in (2.11) and next we use (1.4) and (1.7) Similarly, letting $x^{2}:=1+x^{2}$ and $y=1$ in (2.11) and applying
(1.5) and (1.6) we obtain the inequalities (2.8). For the proof of the inequalities (2.9) we use (2.11) with $y=1$ together with two formulas

$$
R_{C}\left(x^{2}, 1\right)=\frac{\arccos x}{\sqrt{1-x^{2}}}
$$

and

$$
\begin{equation*}
R_{C}\left(1, x^{2}\right)=\frac{\operatorname{arccosh}(1 / x)}{\sqrt{1-x^{2}}} \quad(|x| \leq 1) \tag{2.12}
\end{equation*}
$$

which follow easily from (1.3). If $|x| \geq 1$, then

$$
R_{C}\left(x^{2}, 1\right)=\frac{\operatorname{arccosh} x}{\sqrt{x^{2}-1}}
$$

and

$$
\begin{equation*}
R_{C}\left(1, x^{2}\right)=\frac{\arccos (1 / x)}{\sqrt{x^{2}-1}} \tag{2.13}
\end{equation*}
$$

Letting $y=1$ in (2.11) and next using the last two formulas we obtain the inequalities (2.10).

We shall prove now the following.
Theorem 4. If $0<y \leq 1 \leq x$, then

$$
\begin{equation*}
\frac{\operatorname{arccosh} x}{\sqrt{x^{2}-1}} \leq \frac{\arccos y}{\sqrt{1-y^{2}}} \tag{2.14}
\end{equation*}
$$

with equality if $x=y=1$. Also, if $0 \leq x \leq 1$, then

$$
\begin{equation*}
\sqrt{1-x^{2}} \operatorname{arctanh} x \leq \sqrt{1+x^{2}} \arctan x \tag{2.15}
\end{equation*}
$$

with the inequality reversed if $-1<x \leq 0$. Inequality (2.15) becomes an equality if $x=0$.
Proof. B. C. Carlson and J. L. Gustafson [3] have proven a result which in a particular case states that the function R_{C} is strictly totally positive. Thus if $0 \leq x_{1}<x_{2}$ and $0<y_{1}<y_{2}$, then

$$
R_{C}\left(x_{1}, y_{2}\right) R_{C}\left(x_{2}, y_{1}\right)<R_{C}\left(x_{1}, y_{1}\right) R_{C}\left(x_{2}, y_{2}\right)
$$

Letting above $x_{1}=0, x_{2}=x>0$ and next using (1.2) we obtain

$$
\begin{equation*}
\sqrt{y_{1}} R_{C}\left(x, y_{1}\right)<\sqrt{y_{2}} R_{C}\left(x, y_{2}\right) \tag{2.16}
\end{equation*}
$$

Assume that $0<y<1<x$. Putting in (2.16) $y_{1}=1 / x^{2}, y_{2}=1 / y^{2}$, and $x=1$ we obtain

$$
\begin{equation*}
\frac{1}{x} R_{C}\left(1, \frac{1}{x^{2}}\right)<\frac{1}{y} R_{C}\left(1, \frac{1}{y^{2}}\right) \tag{2.17}
\end{equation*}
$$

Application of (2.12), with $x:=1 / x$, to the first member of (2.17) and use of (2.13), with $x:=1 / y$, on the second member of (2.17) completes the proof of (2.14). In
order to establish the inequality (2.15) we use (2.16) with $y_{1}=1-x^{2}, y_{2}=1+x^{2}$ ($0<x<1$), and $x=1$, to obtain

$$
\sqrt{1-x^{2}} R_{C}\left(1,1-x^{2}\right)<\sqrt{1+x^{2}} R_{C}\left(1,1+x^{2}\right)
$$

Making use of (1.7) and (1.5) we obtain the assertion. The proof is complete.
We close this section with the following.
Theorem 5. Let $f(t)$ denote one of the following functions $\arcsin t, \arctan t$, $\operatorname{arcsinh} t, \operatorname{arctanh} t$ and let x and y belong to the domain of $f(t)$. If $z^{2}=\left(x^{2}+y^{2}\right) / 2$, then the following inequality

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{2} \leq \frac{f(x)}{x} \frac{f(y)}{y} \tag{2.18}
\end{equation*}
$$

is valid.
Proof. It follows from Proposition 2.1 in [6] that the function $R_{C}(\cdot, \cdot)$ is logarithmically convex in its variables

$$
\begin{equation*}
\left(R_{C}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right)^{2} \leq R_{C}\left(x_{1}, y_{1}\right) R_{C}\left(x_{2}, y_{2}\right) \tag{2.19}
\end{equation*}
$$

$\left(x_{1} \geq 0, x_{2} \geq 0, y_{1}>0, y_{2}>0\right)$. Letting in (2.19) $x_{1}=1-x^{2}, x_{2}=1-y^{2}$, $y_{1}=y_{2}=1$ and next using (1.4) we obtain the desired result when $f(t)=\arcsin t$. The remaining cases can be established in the same way.

Using (1.3) and (2.19) one can establish inequalities similar to (2.18) when $f(t)=\arccos t$ and $f(t)=\operatorname{arccosh} t$. We omit further details.

REFERENCES

1. B. C. Carlson: Algorithms involving arithmetic and geometric means. Amer. Math. Monthly, 78 (1971), 496-505.
2. B. C. Carlson: Special Functions of Applied Mathematics. Academic Press, New York, 1977.
3. B. C. Carlson, J. L. Gustafson: Total positivity of mean values and hypergeometric functions. SIAM J. Math. Anal., 14(2) (1983), 389-395.
4. D. S. Mitrinović: Analytic Inequalities. Springer-Verlag, Berlin, 1970.
5. E. Neuman, J. SÁndor: On the Schwab-Borchardt mean. Math. Pannonica, 14(2) (2003), 253-266.
6. E. Neuman, J. Sándor: On the Schwab-Borchardt mean II. Math. Pannonica, 17 (1) (2006), 49-59.

Department of Mathematics,

[^0]: 2000 Mathematics Subject Classification: Primary 26D07, 33B10
 Keywords and Phrases: Inequalities, inverse circular and inverse hyperbolic functions, R hypergeometric functions, total positivity, logarithmic convexity.

