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THE GENERALIZED HERONIAN MEAN

AND ITS INEQUALITIES

Kaizhong Guan, Huantao Zhu

In this paper, a class of ratio inequalities for the generalized Heronian mean of

two numbers are established. Some Ky Fan type inequalities are also proved.

We define the generalized Heronian mean in n variables, whose properties,

including Schur-convexity, are investigated.

1. INTRODUCTION AND NOTATION

Let a and b be two non-negative real numbers. The Heronian mean of a and
b is defined as

He(a, b) =
a +

√
ab + b

3
.

For the “classical” Heronian mean He(a, b) is known that the sharpest double-
inequality of type

(1.1) Mα(a, b) ≤ He(a, b) ≤ Mβ(a, b)

is given by α = ln 2

ln 3
and β = 2

3
(See [1] and [2], p. 350), where as usual

Mp(a, b) =





(
ap + bp

2

)1/p

, p 6= 0,
√

ab, p = 0

denotes the p-th power-mean of a and b.
In [3], H̃(a, b) is defined by

H̃(a, b) =
a + 4

√
ab + b

6
.
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The following double-inequality

(1.2) M1/3(a, b) ≤ H̃(a, b) ≤ M1/2(a, b)

is established.
Recently, Walther Janous [4] defined further the generalized Heronian

mean

Hω(a, b) =





a + ω
√

ab + b

ω + 2
, 0 ≤ ω < +∞,

√
ab, ω = +∞.

Clearly, H1(a, b) = He(a, b) and H4(a, b) = H̃(a, b). The author established several
inequalities for it, some of which are concerned with some well-known means such
as the logarithmic mean L(a, b) and the identric mean I(a, b) defined as

L(a, b) =

{
a− b

ln a− ln b
, a 6= b,

a, a = b

and

I(a, b) =





1

e

(
aa

bb

)1/(a−b)

, a 6= b,

a, a = b,

respectively. The main results read as follows

Theorem A. Let ω > 0 be given. Then the optimum values α and β such that

Mα(a, b) ≤ Hω(a, b) ≤ Mβ(a, b)

holds in general, are

1) in case of ω ∈ (0, 2] : αmax = ln 2

ln(ω + 2)
and βmin = 2

ω + 2
,

2) in case of ω ∈ [2,+∞) : αmax = 2

ω + 2
and βmin = ln 2

ln(ω + 2)
.

Theorem B. The optimum numbers α and β such that

(1.3) Hα(a, b) ≤ L(a, b) ≤ Hβ(a, b)

is true in general, are αmin = +∞ and βmax = 4.

Theorem C. The optimum numbers α and β such that

(1.4) Hα(a, b) ≤ I(a, b) ≤ Hβ(a, b)

is valid in general, are αmin = 1 and βmax = e− 2.

Remark. For the logarithmic and identric means, there are some good results.
See, for example, [4, 7, 9, 11-15] and the references cited therein.
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It should be noted that the above Heronian mean and its generalizations are
those of two real numbers. Now, the generalized Heronian mean in n variables will
be defined.

Definition 1.1. Let x = (x1, x2, . . . , xn), xi ≥ 0, i = 1, 2, . . . , n . The generalized
Heronian mean in n variables x1, x2, . . . , xn is defined as

Hω(x) = Hω(x1, x2, . . . , xn)=





x1 + x2 + · · ·+ xn + ω n
√

x1x2 · · ·xn

ω + n
, 0 ≤ ω < +∞,

n
√

x1x2 · · ·xn, ω = +∞.

Obviously, when n = 2, it reduces to Hω(a, b). Thus, the mean generalizes Hω(a, b).
For fixed n ≥ 2, let

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)

be two n-tuples of real numbers. Let

x[1] ≥ x[2] ≥ · · · ≥ x[n], y[1] ≥ y[2] ≥ · · · ≥ y[n],

be their ordered components. We give the following

Definition 1.2. ([5, p. 55]) The n-tuple x is to be majorized by y (in symbols
x ≺ y), if

(1.5)
m∑

i=1

x[i] ≤
m∑

i=1

y[i], m = 1, 2, . . . , n− 1;

and

(1.6)
n∑

i=1

x[i] =
n∑

i=1

y[i].

The Schur-convex function was introduced by I. Schur in 1923 [5]. It has
many important applications in analytic inequalities. Hardy, Littlewood, and
Pólya were also interested in some inequalities that are related to Schur-convex
functions [16]. Its definition is following

Definition 1.3. ([5, p. 54]) A real-valued function φ defined on a set Ω ⊂ Rn is
said to be Schur-convex function on Ω if

x ≺ y on Ω ⇒ φ(x) ≤ φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y, then
φ is said to be strictly Schur-convex on Ω. φ is Schur-concave function on Ω if and
only if −φ is Schur-convex function; φ is a strictly Schur-concave function on Ω if
and only if −φ is strictly Schur-convex function on Ω.
For more details the interested readers can see [5], [6], [8] and [9].
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Throughout the paper we assume that Rn
+ = {x = (x1, x2, . . . , xn) | xi >

0, i = 1, 2, . . . , n}. The un-weighted arithmetic and geometric means of x, denoted
by An(x), Gn(x), respectively, are defined as follows

An(x) = 1

n

n∑

i=1

xi, Gn(x) =
(

n∏
i=1

xi

)1/n

.

Assume that 0 ≤ xi < 1, 1 ≤ i ≤ n and define 1−x = (1−x1, 1−x2, . . . , 1−xn). The
symbols An(1−x), Gn(1−x) also stand for the un-weighted arithmetic, geometric
means of 1− x , respectively.

A remarkable new counterpart of the inequality Gn(x) ≤ An(x) has been
published in [17, p. 5].

Theorem D. If 0 < xi ≤ 1/2, for all i = 1, 2, . . . , n, then

(1.7)
Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)

with equality only and only if all the xi are equal.
This result, commonly referred to as the Ky Fan inequality, has stimulated

an interest of many researchers. New proofs, improvements and generalizations of
the inequality (1.7) have been found ( For instance, see [7, 12, 18]).

The paper is organized as follows. In section 3, some ratio inequalities for
the generalized Heronian mean Hω(a, b) are established. Several “Ky Fan” type
inequalities are also obtained in section 4. The properties of Hω(x1, x2, . . . , xn),
including Schur-convexity, are investigated in the final section.

2. LEMMAS

In order to verify our results, the following lemmas are necessary.

Lemma 2.1. ([4]) (i) For ω ∈ (0, 2) there holds (ω + 2)4 > 4ω+2. (ii) For ω > 2
the reversed inequality holds true.

Lemma 2.2. ([5, p. 57; 6, p. 259]) Let f(x) = f(x1, x2, . . . , xn) be symmetric and
have continuous partial derivatives on In = I × I × · · · × I (n copies), where I is
an open interval. Then f : In → R is Schur-convex if and only if

(2.1) (xi − xj)
(

∂f

∂xi
− ∂f

∂xj

)
≥ 0

on In. It is strictly Schur-convex if (2.1) is a strict inequality for xi 6= xj, 1 ≤
i, j ≤ n.

Since f(x) is symmetric, Schur’s condition, i.e. (2.1), can be reduced as [5,
p. 57]

(2.2) (x1 − x2)
(

∂f

∂x1
− ∂f

∂x2

)
≥ 0,
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and f is strictly Schur-convex if (2.2) is a strict inequality for x1 6= x2. The
Schur’s condition that guarantees a symmetric function being Schur-concave is
the same as (2.1) or (2.2) except for the direction of the inequality.

In Schur’s condition, the domain of f(x) does not have to be a Cartesian
product In. Lemma 2.2 remains true if we replace In by a set A ⊆ Rn with the
following properties ([5, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense that x ∈ A implies Px ∈ A for any n × n

permutation matrix P .

3. SOME RATIO INEQUALITIES OF Hω(a, b).

In the section we establish a class of ratio inequalities of the generalized
Heronian mean Hω(a, b). All inequalities are best possible.

Theorem 3.1. Let ω > 0 be given and assume that b1 ≥ b2 > 0,
a1

b1
≥ a2

b2
> 0.

Then
(i) in case of ω ∈ (0, 2] :

(3.1)
Mq(a1, a2)
Mq(b1, b2)

≤ Hω(a1, a2)
Hω(b1, b2)

≤ Mp(a1, a2)
Mp(b1, b2)

;

(ii) in case of ω ∈ [2,∞) :

(3.2)
Mp(a1, a2)
Mp(b1, b2)

≤ Hω(a1, a2)
Hω(b1, b2)

≤ Mq(a1, a2)
Mq(b1, b2)

,

the above equalities hold if and only if a1

a2
= b1

b2
(ω 6= 2), where p = 2

ω + 2
, q =

ln 2

ln(ω + 2)
.

Proof. Simply calculating reveals

(3.3)
Hω(a1, a2)
Hω(b1, b2)

=
a2

b2

a1

a2
+ ω

√
a1

a2
+ 1

b1

b2
+ ω

√
b1

b2
+ 1

,

and

(3.4)
Mr(a1, a2)
Mr(b1, b2)

=
a2

b2




(
a1

a2

)r

+ 1
(

b1

b2

)r

+ 1




1/r

.

In view of (3.3) and (3.4), in order to prove the theorem, we only need to compare

Mq

(
a1

a2
, 1

)
/Mq

(
b1

b2
, 1

)
, Hω

(
a1

a2
, 1

)
/Hω

(
b1

b2
, 1

)
and Mp

(
a1

a2
, 1

)
/Mp

(
b1

b2
, 1

)
. Let

a1

a2
= x and b1

b2
= y, then x ≥ y ≥ 1. Below, we consider two possible cases for ω.
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(i) For ω = 2 we are done due to H2(a, b) = M1/2(a, b).

(ii) For ω 6= 2. Firstly, let us compare Hω(x, 1)

Hω(y, 1)
and

Mln 2/ ln(ω+2)(x, 1)

Mln 2/ ln(ω+2)(y, 1)
by

considering the following difference

N(x, y) =
�
ln Hω(x, 1)− ln Hω(y, 1)

�− � ln Mln 2/ ln(ω+2)(x, 1)− ln Mln 2/ ln(ω+2)(y, 1)
�

=
�
ln Hω(x, 1)− ln Mln 2/ ln(ω+2)(x, 1)

�− � ln Hω(y, 1)− ln Mln 2/ ln(ω+2)(y, 1)
�
.

Set
f(x) = ln Hω(x, 1)− ln Mln 2/ ln(ω+2)(x, 1), x ≥ 1.

For convenience, letting x = s2 ln(ω+2) (s ≥ 1) and using the abbreviation p =
ln(ω + 2), we have

(ln 2)f(x) = A(s),

where
A(s) = (ln 2) · ln(1 + ω · sp + s2p)− p · ln(1 + s2 ln 2), s ≥ 1.

Differentiating A(s) with respect to s, we obtain

A′(s) = p · (ln 2) · s−1

(
ω · sp + 2s2p

1 + ω · sp + 2s2p
− 2s2 ln 2

1 + s2 ln 2

)
,

i.e. (as a short simplification shows)

A′(s) =
p · (ln 2) · s2 ln 2−1 ·K(s)

(1 + ωsp + s2p)(1 + s2 ln 2)
,

where
K(s) = 2s2p−2 ln 2 − ω · sp + ω · sp−2 ln 2 − 2.

But K ′(s) = sp−2 ln 2−1 · L(s) with

L(s) = 2 (2p− 2 ln 2)sp − p · ω · s2 ln 2 + ω(p− 2 ln 2),

whence finally

L′(s) = p · s2 ln 2−1 · ((4p− ln 16)sp−2 ln 2 − 2ω ln 2
)
.

We now distinguish two cases.
(1) ω ∈ (0, 2). By Lemma 2.1, we have L′(1) > 0. Because of p − 2 ln 2 < 0

it follows L′(s) > 0 for s ∈ (1, s0) and L′(s) < 0 for s ∈ (s0, +∞) where s0 =(
2ω ln 2

4p− ln 16

)1/(p−2 ln 2)

. Thus, L(1) > 0 and L(s) → −∞ as s → +∞ (note

p < 2 ln 2) yield the existence of precisely one s1 ∈ (s0,+∞) such that K(s) in-
creases as s ∈ (1, s1) and K(s) decreases as s ∈ (s1,+∞). Noting A′(1) = 0 and
lims→+∞A′(s) = 0, we have A′(s) ≥ 0, s > 1, which shows that A(s) increases
in [1, +∞). Namely, f(x) increases as x ∈ [1,∞). Therefore, if x ≥ y ≥ 1, then
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f(x) ≥ f(y). There follows that N(x, y) ≥ 0. Simply calculation shows that the
left-hand inequality of (3.1) holds.

(2) ω ∈ (2, +∞). Reasoning in a similar fashion as before we have L′(s) < 0
as s ∈ (1, s0) and L′(s) > 0 for s ∈ (s0, +∞). As in (1) there follows the existence
of two interval (1, s2) and (s2,+∞) on which K(s) decreases and increases, resp.,
finally leading to A(s) ( or f(x)) decreases in [1, +∞). It follows that N(x, y) ≤ 0,
which implies that the right-hand inequality of (3.2) is true.

Next we consider Hω(x, 1)

Hω(y, 1)
and

M2/(ω+2)(x, 1)

M2/(ω+2)(y, 1)
. Let

E(x, y) =
(
ln Hω(x, 1)− ln Hω(y, 1)

)− (
ln M2/(ω+2)(x, 1)− ln M2/(ω+2)(y, 1)

)

=
(
ln Hω(x, 1)− ln M2/(ω+2)(x, 1)

)− (
ln Hω(y, 1)− ln M2/(ω+2)(y, 1)

)
,

and
g(x) = ln Hω(x, 1)− ln M2/(ω+2)(x, 1), x ≥ 1.

Setting x = s2(ω+2) (s ≥ 1), we obtain

2g(x) = 2 ln(1+ω ·sω+2+s2(ω+2))−(ω+2) ln(1+s4)+(ω+2) ln 2−2 ln(ω+2), s ≥ 1.

Put

B(s) = 2 ln(1+ω ·sω+2+s2(ω+2))−(ω+2) ln(1+s4)+(ω+2) ln 2−2 ln(ω+2), s ≥ 1.

Differentiating B(s) with respect to s, we have

B′(s) =
2(ω + 2)s3 · F (s)

(1 + ω · sω+2 + s2(ω+2)) · (1 + s4)
,

where F (s) = 2s2ω − ω · sω+2 + ω · sω−2 − 2, s ≥ 1.

But

F ′(s) = ωsω−3G(s), G(s) = 4sω+2 − (ω + 2)s4 + ω − 2,

and
G′(s) = 4(ω + 2)s3(sω−2 − 1), s ≥ 1,

which shows G′(s) ≤ 0 as ω ∈ (0, 2) and G′(s) ≥ 0 for ω ∈ (2, +∞). Therefore, due
to F ′(1) = G(1) = 0 there follows for s ≥ 1: F ′(s) ≤ 0 for ω ∈ (0, 2) and F ′(s) ≥ 0
as ω ∈ (2,+∞). This and F (1) = 0 imply for s ≥ 1 : F (s) ≤ 0 if ω ∈ (0, 2)
and F (s) ≥ 0 if ω ∈ (2, +∞). And thus, B(s) ( or g(x)) decreases in [1,+∞) if
ω ∈ (0, 2) and B(s) (or g(x)) increases in [1,+∞) if ω ∈ (2, +∞). From this, we
can get the following conclusions:

(1) if ω ∈ (0, 2), then E(x, y) ≤ 0, which shows that the right-hand inequality
of (3.1) is true.

(2) if ω ∈ (2, +∞), then E(x, y) ≥ 0 implies the left-hand inequality of (3.2).
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Finally, from the process of the proof, one can easily find that the equalities
hold if and only if a1

a2
= b1

b2
.

Summarizing the above discussion, we have completed the proof of Theorem
3.1.

Theorem 3.2. If b1 ≥ b2 > 0,
a1

b1
≥ a2

b2
> 0, then

(3.5)
G(a1, a2)
G(b1, b2)

≤ L(a1, a2)
L(b1, b2)

≤ H4(a1, a2)
H4(b1, b2)

,

with equality if and only if a1

a2
= b1

b2
.

Proof. (1) In the case where b1 = b2, since the theorem reduces to Theorem B,
the proof is complete.

(2) Let b1 > b2. Clearly,

G(a1, a2)
G(b1, b2)

=
a2

b2

√
a1

a2√
b1

b2

,
L(a1, a2)
L(b1, b2)

=
a2

b2

(a1/a2)− 1

ln(a1/a2)

(b1/b2)− 1

ln(b1/b2)

,

and

H4(a1, a2)
H4(b1, b2)

=
a2

b2

a1

a2
+ 4

√
a1

a2
+ 1

b1

b2
+ 4

√
b1

b2
+ 1

.

Let a1

a2
= x and b1

b2
= y, then x ≥ y > 1. Thus, the inequality (3.5) is equivalent to

the following

(3.6)
√

x

y
≤ x− 1

ln x
· ln y

y − 1
≤ x + 4

√
x + 1

y + 4
√

y + 1
.

In order to prove the left-hand inequality of (3.6), we have to look at the function

f(x) =
x− 1√
x ln x

, x > 1.

Letting x = s2 (s > 1), we have

f(x) = g(s) =
s2 − 1
2s ln s

, s > 1.

Differentiating g(s) with respect to s, we get g′(s) = 1

2(s ln s)2
· h(s) with h(s) =

(ln s) s2 − s2 + ln s + 1. Now

h′(s) = 2s ln s− s +
1
s
, h′′(s) = 1 + 2 ln s− 1

s2
; h′′′(s) =

2
s

+
2
s3

> 0, s ≥ 1.
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Therefore, due to h′(1) = h′′(1) = 0 and lims→1 g′(s) = 0 there follows g′(s) > 0,

which implies that g(s) (or f(x)) increases in (1,+∞). Thus, x− 1√
x ln x

≥ y − 1√
y ln y

.

And so, the left-hand inequality of (3.6) holds.

For the right-hand-inequality of (3.6), let l(x) = (x + 4
√

x + 1) ln x

x− 1
(x > 1)

and x = s2 (s > 1), we have

l(x) = e(s) =
2(s2 + 4s + 1) · ln s

s2 − 1
, s > 1.

Now

e′(s) =
2

(s2 − 1)2
φ(s),

where φ(s) = −4s2 ln s− 4s ln s− 4 ln s + s3 + 4s2 − 4− 1

s
, s > 1.

But

φ′(s) = − 8s ln s− 4 ln s + 3s2 + 4s− 4
s

+
1
s2
− 4,

φ′′(s) = − 8 ln s + 6s− 4
s

+
4
s2
− 2

s3
− 4,

φ′′′(s) = 6− 8
s

+
4
s2
− 8

s3
+

6
s4

,

φ(4)(s) =
8
s2

(
1− 1

s
+

3
s2
− 3

s3

)
> 0, s > 1.

Observing that φ(1) = φ′(1) = φ′′(1) = φ′′′(1) = 0, one can easily find that e(s)
(or l(x)) increases in (1, +∞). Thus,

(x + 4
√

x + 1) ln x

x− 1
≥ (y + 4

√
y + 1) ln y

y − 1
, x ≥ y > 1.

A short simplification shows that the right-hand-inequality of (3.6) holds.
From the above discussion, it is easy to verify that the equalities of (3.5) hold

if and only if a1

a2
= b1

b2
. And so, the proof is complete.

Theorem 3.3. If b1 ≥ b2 > 0,
a1

b1
≥ a2

b2
> 0, then

(3.7)
H1(a1, a2)
H1(b1, b2)

≤ I(a1, a2)
I(b1, b2)

≤ He−2(a1, a2)
He−2(b1, b2)

,

with equality if and only if a1

a2
= b1

b2
.

Proof. (i) In the case that b1 = b2, we are done because the theorem reduces to
Theorem C.
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(ii) When b1 > b2, one can easily obtain

H1(a1, a2)
H1(b1, b2)

=
a2

b2

a1

a2
+

√
a1

a2
+ 1

b1

b2
+

√
b1

b2
+ 1

,
I(a1, a2)
I(b1, b2)

=
a2

b2

(
a1

a2

)a1/(a1−a2)

(
b1

b2

)b1/(b1−b2)
.

Let a1

a2
= x,

b1

b2
= y, then x ≥ y > 1. Thus, (3.7) is equivalent to the following

inequality

(3.8)
H1(x, 1)
H1(y, 1)

≤ xx/(x−1)

yy/(y−1)
≤ Hq(x, 1)

Hq(y, 1)
.

Consider the left-hand inequality of (3.8). Let

(3.9) ρ(x) =
xx/(x−1)

H1 (x, 1)
, x > 1.

Taking logarithmic on (3.9) yields

θ(x) = ln ρ(x) =
x

x− 1
ln x− ln(x +

√
x + 1)− ln 3.

For convenience, letting x = s2 (s > 1), we have

θ(x) = θ1(s) =
2s2 ln s

s2 − 1
− ln(s2 + s + 1)− ln 3.

Differentiating θ1(s) with respect to s, we get

θ′1(s) =
1

(s2 − 1)2(s2 + s + 1)
· θ2(s),

where θ2(s) = −4s3 ln s− 4s2 ln s− 4s ln s + s4 + 4s3 − 4s− 1. But

θ′2(s) = − 12s2 ln s− 8s ln s− 4 ln s + 4s3 + 8s2 − 4s− 8;

θ′′2 (s) = − 24s ln s− 8 ln s + 12s2 + 4s− 4
s
− 12;

θ′′′2 (s) = − 24 ln s + 24s− 8
s

+
4
s2
− 20;

θ
(4)
2 (s) = 24

(
1− 1

s

)
+

8
s2

(
1− 1

s

)
> 0, s > 1.

Noticing θ′2(1) = θ′′2 (1) = θ′′′2 (1) = 0 and lims→1 θ′1(1) = 0, we have θ′(s) ≥ 0, s > 1.
Therefore, ρ(x) increases in (1,+∞), from which, it follows that

xx/(x−1)

H1(x, 1)
≥ yy/(y−1)

H1(y, 1)
or

H1(x, 1)
H1(y, 1)

≤ xx/(x−1)

yy/(y−1)
, x ≥ y > 1.
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Below, setting w(x) = xx/(x−1)

He−2(x)
(x > 1) and taking logarithm on it, we have

u(x) =
x

x− 1
ln x− ln

(
x + (e− 2)

√
x + 1

)− 1, x > 1.

Putting x = s2 (s > 1) there follows that

u(x) = v(s) =
2s2 ln s

s2 − 1
− ln

(
s2 + (e− 2)s + 1

)− 1, s > 1.

Differentiating v(s) with respect to s, we obtain

v′(s) =
1

(s2 + (e− 2)s + 1)(s2 − 1)2
· z(s), s > 1,

where z(x) = −4s3 ln s − 4(e − 2)s2 ln s − 4s ln s + (e − 2)s4 + 4s3 − 4s − (e − 2).
Now

z′(x) = − 12s2 ln s− 8(e− 2)s ln s− 4 ln s + 4(e− 2)s3 + 8s2 − 4(e− 2)s− 8;

z′′(s) = − 24s ln s− 8(e− 2) ln s + 12(e− 2)s2 + 4s− 4
s
− 12(e− 2);

z′′′(s) = − 24 ln s + 24(e− 2)s− 8(e− 2)
s

+
4
s2
− 20;

z(4)(s) =
(

24 +
8
s2

)(
e− 2− 1

s

)
< 0, s > 1.

Notice z′′′(1) = 24(e − 3) < 0, z′′(1) = z′(1) = z(1) = 0. There follows z(x) < 0.
And thus, v′(s) < 0, which means that v(s) ( or u(x)) decreases in (1,+∞). Hence
w(x) is decreasing for x ∈ [1, +∞), from this, it follows that

xx/(x−1)

He−2(x)
≤ yy/(y−1)

He−2(y)
, x ≥ y > 1,

which leads to the right-hand inequality of (3.8).
From the above proof, it is clear that the equalities of (3.7) hold if and only

if a1

a2
= b1

b2
.

Summarizing the above discussion, we have proven the theorem.

Remark 3.4. When b1 = b2, Theorem 3.1, Theorem 3.2 and Theorem 3.3 reduce to
Theorem A, Theorem B and Theorem C, respectively. From which, all inequalities
established here are best possible.

4. SOME “KY FAN” TYPE INEQUALITIES

In the section, we establish several “Ky Fan” type inequalities by use of the
generalized Heronian mean Hω(a, b).
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Theorem 4.1. If 0 < a1 < a2 ≤ 1/2, then
(i) in case of ω ∈ (0, 2] :

Mq(a1, a2)

Mq(1− a1, 1− a2)
≤ Hω(a1, a2)

Hω(1− a1, 1− a2)
≤ Mp(a1, a2)

Mp(1− a1, 1− a2)
;

(ii) in case of ω ∈ [2, +∞) :

Mp(a1, a2)

Mp(1− a1, 1− a2)
≤ Hω(a1, a2)

Hω(1− a1, 1− a2)
≤ Mq(a1, a2)

Mq(1− a1 , 1− a2)
,

where p = 2

ω + 2
, q = ln 2

ln(ω + 2)
.

Proof. The fact that 0 < a1 < a2 ≤ 1/2 implies that 1− a1 > 1− a2 ≥ 1/2. One
can easily find that

Hω(a1, a2)
Hω(1− a1, 1− a2)

=
a1

1− a2

a2

a1
+ ω

√
a2

a1
+ 1

1− a1

1− a2
+ ω

√
1− a1

1− a2
+ 1

,

and

Mr(a1, a2)
Mr(1− a1, 1− a2)

=
a1

1− a2




(
a2

a1

)r

+ 1
(

1− a1

1− a2

)r

+ 1




1/r

.

Let a2

a1
= x,

1− a1

1− a2
= y, then x > y > 1 (since f(x) = x(1−x) increases in (0, 1/2]).

The rest proof of the theorem is similar to that of Theorem 3.1 and be omitted.

Theorem 4.2. Assume that 0 < a1 < a2 ≤ 1/2. Then

G(a1, a2)
G(1− a1, 1− a2)

≤ L(a1, a2)
L(1− a1, 1− a2)

≤ H4(a1, a2)
H4(1− a1, 1− a2)

.

Proof. From the condition of the theorem, it follows that 1− a1 > 1− a2 ≥ 1/2.
Simply calculating shows that

Hω(a1, a2)
Hω(1− a1, 1− a2)

=
a1

1− a2

a2

a1
+ ω

√
a2

a1
+ 1

1− a1

1− a2
+ ω

√
1− a1

1− a2
+ 1

,

and

L(a1, a2)
L(1− a1, 1− a2)

=
a1

1− a2

(a2/a1)− 1

ln(a2/a1)

(1− a1)/(1− a2)− 1

ln
�
(1− a1)/(1− a2)

� .
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Let a2

a1
= x,

1− a1

1− a2
= y, we get x ≥ y > 1 ( since f(x) = x(1 − x) increases in

(0, 1/2]). The rest proof of the theorem is similar to that of Theorem 3.2 and so be
omitted.

Remark 4.3. Theorem 4.2 generalizes Proposition 5 in [7], that is,

If a1, a2 ∈ (0, 1/2], then G(a1, a2)

G(1− a1, 1− a2)
≤ L(a1, a2)

L(1− a1, 1− a2)
.

Using the technology similar to Theorem 4.1 (or Theorem 4.2), we can get
the following

Theorem 4.4. If 0 < a1 < a2 ≤ 1/2, then

H1(a1, a2)
H1(1− a1, 1− a2)

≤ I(a1, a2)
I(1− a1, 1− a2)

≤ He−2(a1, a2)
He−2(1− a1, 1− a2)

.

5. ELEMENTARY PROPERTIES OF Hω(x) = Hω(x1, x2, . . . , xn)

In the section, we investigate Hω(x1, x2, . . . , xn). Some properties of it are
given. In particular, the Schur-convexity is proved, several inequalities are estab-
lished by use of the theory of majorization (See the popular book [5].).

Theorem 5.1. Let xi ≥ 0, i = 1, 2, . . . , n. Then
(i) Hω(x) is a non-increasing function of the variable ω, i.e. we have: Hα(x)

≥ Hβ(x) whenever 0 ≤ α ≤ β ≤ +∞;

(ii) Hω(x)

Hω−1(x)
(ω ≥ 1) is a non-decreasing function of the variable ω.

Proof. (i) Differentiating Hω(x) with respect to ω and using the arithmetic-
geometric inequality, we have

d
dω

Hω(x) =
n

(n + ω)2
(
Gn(x)−An(x)

) ≤ 0.

(ii) Differentiating Hω(x)

Hω−1(x)
with respect to ω and using the arithmetic-

geometric inequality again, we obtain

d
dω

(
Hω(x)

Hω−1(x)

)
=

1
(n + ω)2

·
((

nAn(x) + ωGn(x)
)(

nAn(x) + (ω − 1)Gn(x)
)

−(n + ω)(n + ω − 1)G 2
n (x)

)
:
(
nAn(x) + (ω − 1)Gn(x)

) 2

≥ 0.

Thus, the proof is complete.
By Theorem 5.1, we have Gn(x) ≤ Hω(x) ≤ An(x), which refines the “A-G”

inequality.

Theorem 5.2. Let 0 < xi ≤ 1/2, i = 1, 2, . . . , n. Then the function Hω(1− x)

Hω(x)
(ω ≥

0) is non-decreasing function of the variable ω.
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Proof. Clearly,
Hω(1− x)

Hω(x)
=

nAn(1− x) + ωGn(1− x)
nAn(x) + ωGn(x)

,

and

(5.1)
d
dω

(
Hω(1− x)

Hω(x)

)
=

n
(
An(x)Gn(1− x)−An(1− x)Gn(x)

)
(
nAn(x) + ωGn(x)

)2 .

From (5.1) and Theorem D, it follows that

d
dω

(
Hω(1− x)

Hω(x)

)
≥ 0,

which implies that Hω(1− x)

Hω(x)
(ω ≥ 0) is non-decreasing function of the variable ω.

Corollary 5.3. Let 0 < xi ≤ 1/2, i = 1, 2, . . . , n. Then

(5.2)
Gn(x)

Gn(1− x)
≤ Hω(x)

Hω(1− x)
≤ An(x)

An(1− x)
.

Remark 5.4. The inequality (5.2) refines Ky Fan inequality.

Theorem 5.5. The function Hω(x) = Hω(x1, x2, . . . , xn) (ω > 0) is strictly Schur-
concave in Rn

+ and increases with respect to xi, i = 1, 2, . . . , n.

Proof. It is clear that Hω(x) is symmetric and has continuous partial derivatives
on Rn

+. Differentiating Hω(x) with respect to xi, we have

(5.3)
∂Hω(x)

∂xi
=

1
ω + n

(
1 +

ω

n

n
√

x1x2 · · ·xn

xi

)
,

which shows that Hω(x) is increasing with respect to xi.
To investigate the strictly Schur-convexity, By Lemma 2.2, we only need to

prove

(x1 − x2)
(

∂Hω(x)
∂x1

− ∂Hω(x)
∂x2

)
< 0, (x1 6= x2).

As matter of fact, when x1 6= x2, it follows, from (5.3), that

(x1 − x2)

�
∂Hω(x)

∂x1
− ∂Hω(x)

∂x2

�
= (x1 − x2)

ω

n(ω + n)

�
n
√

x1x2 · · ·xn

x1
−

n
√

x1x2 · · ·xn

x2

�
= − ω · n

√
x1x2 · · ·xn

n(ω + n)x1x2
(x1 − x2)

2 < 0.

Thus, the proof is complete.

Theorem 5.6. The function Hω(x)

Hω−1(x)
(ω ≥ 1) is strictly Schur-concave in Rn

+.
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Proof. Let ψ(x) = Hω(x)

Hω−1(x)
. It is clear that ψ(x) is symmetric and has continuous

partial derivatives on Rn
+. By Lemma 2.2, we only need to prove

(x1 − x2)
(

∂ψ(x)
∂x1

− ∂ψ(x)
∂x2

)
< 0, (x1 6= x2).

To this end, differentiating ψ(x) with respect to x1, we have

∂ψ(x)
∂x1

=
Gn(x)

(n + ω − 1)(n + ω)H 2
ω−1(x)

(
An(x)

x1
− 1

)
.

Similarly,
∂ψ(x)
∂x2

=
Gn(x)

(n + ω − 1)(n + ω)H 2
ω−1(x)

(
An(x)

x2
− 1

)
.

Thus, when x1 6= x2, we get

(x1 − x2)
(

∂ψ(x)
∂x1

− ∂ψ(x)
∂x2

)
= (x1 − x2)

An(x)Gn(x)
(n + ω − 1)(n + ω)H 2

ω−1(x)

(
1
x1
− 1

x2

)

= − An(x)Gn(x)
(n + ω − 1)(n + ω)H 2

ω−1(x)
(x1 − x2)2

x1x2
< 0.

The proof of the theorem is complete.

Corollary 5.7. Let xi > 0, i = 1, 2, . . . , n,
∑n

i=1 xi = 1 and ω > 1. Then

(5.4)
Hω(x)

Hω(1− x)
≤ Hω−1(x)

Hω−1(1− x)
.

Proof. By [10], it follows that
(

1− x1

n− 1
,

1− x2

n− 1
, . . . ,

1− xn

n− 1

)
≺ (x1, x2, . . . , xn).

Using Theorem 5.6, we get (5.4).
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