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ON FIBONACCI POWERS

Vladica Andrejić

Fibonacci numbers have engaged the attention of mathematicians for several

centuries, and whilst many of their properties are easy to establish by very

simple methods, there are several unsolved problems connected to them. In

this paper we review the history of the conjecture that the only perfect powers

in Fibonacci sequence are 1, 8, and 144. Afterwards we consider more

stronger conjecture and give the new characterization of closely related Wall-

Sun-Sun primes.

1. INTRODUCTION

The Fibonacci numbers have engaged the attention of mathematicians for
several centuries, and whilst many of their properties are easy to establish by
very simple methods, there are several unsolved problems connected to them. Fi-

bonacci numbers are defined with recurrence Fn = Fn−1 + Fn−2, for n ≥ 2, and
initial terms F0 = 0, and F1 = 1. In this paper we consider Fibonacci power
problem, i.e. the equation Fn = Cq, where C and q are integers > 1.

Conjecture 1. The only Fibonacci numbers Fn (n > 0) which are perfect powers

are 1, 8, and 144.

We now review some known results about special cases of Conjecture 1. The
first question related to Conjecture 1 appeared in 1962 in the book by Ogilvy [16],
the problem about square Fibonacci numbers (case q = 2). In 1963, both Moser

and Carlitz [15] and Rollett [24] proposed that problem. By ingenious sieving
computational method Wunderlich [31] showed, that except for the known cases
(F1 and F12), Fn cannot be a square for n < 106. In 1964 square conjecture was
proved analytically by Cohn [5, 6] and independently by Wyler [32]. Problem
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of Fibonacci cubes (case q = 3) was solved by Finkelstein in his doctoral dis-
sertation in 1968 [8, 27]. Since then several other proofs were published: London

and Finkelstein in 1969 [12], Steiner in 1978 [26], Lagarias and Weisser in
1981 [11], Pethö in 1983 [17].

In the beginning of 1980’s, thanks to Baker’s theory of lower bounds for
linear forms in logarithms of algebraic numbers, it was proved by Shorey and
Stewart [25] and independently by Pethö [18] that there were only finitely many
effectively computable Fibonacci powers. The method of Shorey and Stewart

implies that q < 5.1 · 1017 [19, 20], but this upper bound is huge for solutions by
brutal enumeration. From the other side, the conjecture was proved for small q
by combining that method with some algebraic tools and computer calculations:
Pethö for q = 5 [21] and McLaughlin for q = 5, 7, 11, 13, 17 [14]. Thanks to
important progress in computational number theory and theory of linear forms in
logarithms, Bugeaud, Mignotte, and Siksek [3] recently proved the conjecture
using some of the ideas of the proof of Fermat’s Last Theorem.

2. PRELIMINARIES

We give now some definitions and known facts about Fibonacci numbers
without proof.

Definition 1.

1. Z(m) = min{t : m|Ft}.
2. P (m) = min{t : Ft ≡ 0, Ft+1 ≡ 1 (mod m)}.
3. Y (m) = max{t : Z(mt) = Z(m)}.

Z(m) is so called Fibonacci entry point (or rank of apparition, or restricted
period [9]). This is the index of the smallest Fibonacci number divisible by m.
P (m) is the length of the Fibonacci sequence modulo m period. Y (m) is the
greatest integer Y such that FZ(m) is divisible by mY . It can be proved that
Z(n) ≤ 2n, and P (n) ≤ 6n.

Now we give a few very old lemmas [9]:

Lemma 1. m|Fn ⇔ Z(m)|n.

Lemma 2. p|Fp−( p

5
) for all primes p, (where (p

5 ) is the Legendre symbol).

Lemma 3. Z(pk) = pk−Y (p)Z(p) for odd primes p and k ≥ Y (p).

Consider the equation Fn = Cq. Without loss of generality, we may require
that q be prime. We can also suppose that n is prime, see Robbins [22, 23] and
Pethö [17].

Lemma 4. If n > 12 and Fn is a perfect q-th power, then there exists a prime

p > 5, such that Fp is a perfect q-th power.
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3. FIBONACCI CONJECTURE

Concerning Lemma 3, one can ask whether Z(p2) = Z(p). If Z(p2) 6= Z(p)
for all primes p, then we can determine whole Z function from Z(p) for primes p,
because of nice Z([m, n]) = [Z(m), Z(n)], where [−,−] is the least common multiple
of two numbers. Thus we have natural question.

Conjecture 2. Y (p) = 1 for all primes p.

Of course, if Conjecture 2 holds, then we have beautiful Z(pk) = pk−1Z(p).
As far as I know, Conjecture 2 appeared in the work of Wall in 1960 [29] in the
equivalent form P (p2) 6= P (p). The period and the entry point functions are closely
related. One can prove that P (pk) = pk−Y (p)P (p) holds for all odd primes p, and
that P (p2) = P (p) ⇔ Z(p2) = Z(p).

Theorem 1. Conjecture 2 implies Conjecture 1.

Proof. If there exist perfect powers different from 1, 8 and 144, then by Lemma
4 there exist primes p > 5 and q ≥ 2 with Fp = Cq. If r is any prime factor of C,
then we have r2|Fp. Thus Z(r2)|p by Lemma 1, hence Z(r2) = p, which means that
Z(r2) = Z(r). If Conjecture 2 holds this is impossible and we have a contradiction.

Remark 1. A proof that 1, 8, and 144 are the only Fibonacci powers was given by
Buchanan in 1964 [1], but unfortunately, Buchanan’s proof was incomplete and
it was retracted later by himself [2]. He made an error assuming that Conjecture
2 holds, so he actually proved Theorem 1.

Remark 2. We say that p is a primitive factor of Fn if p|Fn, and p 6 |Fm for any
m < n. Carmichael’s theorem states that if n > 12, then Fn has a primitive
prime factor [9]. It is clear that for an arbitrary primitive prime factor p of Cq we
have Z(p) = Z(p2) = · · · = Z(pq). In proof we used the fact that all prime factors
of Fq for prime q are primitive.

There are many equivalent statements of Conjecture 2. If Y (p) > 1 is true
for some prime p, then we have Z(p2) = Z(p). From Lemmas 1 and 2 we know
that Z(p)|p − (p

5 ), and therefore p2|Fp−( p

5
). It is clear that p 6 |Fp+( p

5
) (if p|Fp+( p

5
),

then Z(p)|p + (p

5 ) and Z(p)|p − (p

5 ), i.e. Z(p)|2, which is impossible). Therefore,
p2|Fp−1Fp+1.

Lemma 5. The following four statements are equivalent:

1. Y (p) > 1.

2. Z(p2) = Z(p).

3. p2|Fp−( p

5
).

4. p2|Fp−1Fp+1.

Crandall, Dilcher, and Pomerance [7] called prime p satisfying Lemma
5 statements the Wall-Sun-Sun prime. There is no known way to resolve congru-
ence like Fp−( p

5
) ≡ 0 (mod p2), other than through explicit powering computations.
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On the basis of a search conducted by McIntosh we have learned that there are no
Wall-Sun-Sun primes less than 1014, and no Wall-Sun-Sun primes are known
[13]. Statistical considerations show that in an interval [x, y] it is expected to be
∑

x≤p≤y

1

p
≈ ln(ln y/ lnx) Wall-Sun-Sun primes [7].

However, Conjecture 2 is more stronger than Theorem 1. There are few
results connecting Fermat’s last theorem and Wall-Sun-Sun primes. In 1974
Bruckner showed, using the theory of cyclotomic fields, that if there exists a
Wall-Sun-Sun number, then Fermat’s last theorem has a solution in Q(

√
5)

satisfying certain side conditions [27]. From the other side, in 1992 Zhi-Hong

Sun and Zhi-Wei Sun [28] showed that if p is a failing exponent in the first case
of Fermat’s last theorem (xp + yp = zp with p 6 |xyz), then p must be Wall-Sun-

Sun prime. Unfortunately, it never does, but if one could prove the converse of
this result, then Wiles’ work would guarantee that there are no Wall-Sun-Sun

primes.

4. NEW CHARACTERIZATION OF WALL-SUN-SUN PRIMES

We shall denote n-th Lucas number with Ln, and use known formula for
Lucas’ numbers. For every integer p we have

Lp =

(

1 +
√

5

2

)p

+

(

1 −
√

5

2

)p

,

and therefore for odd p holds

(1) 2p−1Lp =

p−1

2
∑

k=0

(

p
2k

)

5k = 1 +

p−1

2
∑

k=1

p

2k

(

p − 1
2k − 1

)

5k.

From now till the end, we shall suppose that p is odd prime. Taking equation
(1) modulo p, and using little Fermat theorem we obtain

Lemma 6. Lp ≡ 1 (mod p).

Now from
(p

t

)

=
(p − 1

t

)

+
(p − 1

t − 1

)

and p
∣

∣

(p
t

)

for 1 ≤ t ≤ p − 1 we can

conclude
(

p − 1
t

)

≡ (−1)t (mod p) and therefore

(

p − 1
2k − 1

)

≡ −1 (mod p).

Substituting in (1) modulo p2 we get

2p−1Lp ≡ 1 + p

p−1

2
∑

k=1

−1

2k
5k (mod p2),
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and

(2)

p−1

2
∑

k=1

5k

k
≡ 2 − 2pLp

p
(mod p).

Lemma 7. Prime p is a Wall-Sun-Sun prime iff Lp ≡ 1 (mod p2).

Proof. It is easy to show that 5Fp−1Fp+1 = Lp
2 − 1 holds for all odd p. If p is

a Wall-Sun-Sun odd prime, then by Lemma 5 we have Lp
2 ≡ 1 (mod p2). But

Lp ≡ −1 is impossible by Lemma 6, and therefore Lp ≡ 1 (mod p2).

Theorem 2. Prime p is a Wall-Sun-Sun prime iff

p−1

2
∑

k=1

5k − 1

k
≡ 0 (mod p).

Proof. From Lemma 7 and (2) it follows that p is a Wall-Sun-Sun prime iff

p−1

2
∑

k=1

5k

k
≡ 2 − 2p

p
(mod p).

Next we can use known fact

p−1
∑

k=1

1

k
≡ 0 (mod p)

(actually Wolstenholme’s theorem states that the congruence above is also sa-

tisfied modulo p2). Transforming the expansion
p
∑

k=0

(p
k

)

= 2p, we obtain

2 +

p−1
∑

k=1

p

k

(

p − 1
k − 1

)

= 2p.

Consequently,

2 − 2p

p
≡

p−1
∑

k=1

(−1)k

k
≡

p−1
∑

k=1

(−1)k

k
+

p−1
∑

k=1

1

k
≡ 2

p−1

2
∑

k=1

1

2k
≡

p−1

2
∑

k=1

1

k
(mod p),

implying the claim of Theorem.

Remark 3. A similar identity for Wall-Sun-Sun primes p is given by Ward and
published posthumously [30]:

p−1

2
∑

k=1

(5/9)k

k
≡ 2

(3/2)p−1 − 1

p
(mod p).
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For the proof reader can consult [4] and [10].
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