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ON A CLASS OF TRICYCLIC REFLEXIVE
CACTUSES

Bojana Mihailović, Zoran Radosavljević

A simple graph is reflexive if the second largest eigenvalue of its (0, 1) adja-
cency matrix does not exceed 2. A graph is a cactus, or a treelike graph, if
any pair of its cycles (circuits) has at most one common vertex. The subject
of this paper is the class of tricyclic cactuses in which the central cycle is a
quadrangle touching the rest two cycles at its non-adjacent vertices. In this
class we describe a set of maximal reflexive graphs. The so-called “pouring”
of Smith trees plays the crucial role in characterizing the resulting set.

1. INTRODUCTION

For a non-oriented graph G without loops or multiple edges (shortly a simple
graph), PG(λ) = det(λI − A), i.e. the characteristic polynomial of its (0, 1) adja-
cency matrix A, is called the characteristic polynomial of G, and we will denote it
by P (λ) if it is clear which graph it is related to. The family of its roots (the eigen-
values of G) is the spectrum of G. For a simple graph it consists of real numbers and
we will denote them in their non-increasing order: λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).
In a connected graph the largest eigenvalue λ1 (also called the index of the graph)
is strictly greater than λ2, while for a disconnected graph, since now the spectrum
is the union of the spectra of its components, λ1 equals λ2 if this is the common
index of two distinct components. The so-called interlacing theorem establishes the
interrelation between the spectra of a graph and its induced subgraphs.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of a graph G and µ1 ≥ µ2 ≥ · · · ≥
µm eigenvalues of its induced subgraph H.Then the inequalities λn−m+i ≤ µi ≤ λi

hold.
Thus e.g. if m = n− 1, it will be λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · , and also λ1 > µ1

if G is connected.
2000 Mathematics Subject Classification: 05C50
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Graphs having λ2 ≤ 2 are usually called reflexive graphs, and if λ2 ≤ 2 ≤ λ1

they are often called hyperbolic graphs. Reflexive graphs correspond to some sets
of vectors in the Lorentz space Rp,1 and are interesting since they have some
application to the construction and classification of reflexion groups [7]. So far,
reflexive trees have been considered in [5] and [6] and a class of bicyclic reflexive
graphs in [12] (see also [8]). Recently, multicyclic reflexive cactuses have been
studied in [9], [10] and [11].

A cactus, or a treelike graph, is a graph whose any two cycles have at most
one common vertex (i.e. are edge-disjoint).

Since the interlacing theorem implies that the spectral property λ2 ≤ 2 is
hereditary (every induced subgraph preserves it), the results of this paper, as well
as of some former ones, will be expressed through sets of maximal graphs having
this property. Also, since a graph with such a spectral property can have arbitrary
number of components, it goes without saying that we consider only connected
graphs.

The terminology of the theory of graph spectra in this paper follows [1], while
for other graph theoretic notions one can see [4].

2. SOME FORMER AND AUXILIARY RESULTS

Graphs whose index is equal to 2 are described in the following well known
Lemma:

Lemma 1. ([14], see also [1], p. 79) The index of a graph G satisfies λ1(G) ≤ 2
(λ1(G) < 2) if and only if each component of G is a subgraph (a proper subgraph)
of some of the graphs displayed in Fig. 1, all of which have λ1 = 2.
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Fugure 1.

These graphs are known as Smith graphs.
One of the suitable tools for calculating values PG(2) of treelike graphs is

given by the following lemma, due to A. Schwenk.

Lemma 2. ([13], see also [1], p. 78) Given a graph G, let C(v) denote the set of all
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cycles containing a vertex v. Then

PG(λ) = λPG−v(λ)−
∑

u∈adj (v)

PG−v−u(λ)− 2
∑

C∈C(v)

PG−V (C)(λ),

where Adj (v) denotes the set of neighbours of v and G−V (C) is the graph obtained
from G by removing the vertices belonging to the cycle C.

Corollary 1. (E. Heilbronner - see e.g. [1], p. 59) Let G be a graph with a
pendant edge v1v2 (v1 being of degree 1). Then

PG(λ) = λPG1(λ)− PG2(λ),

where G1 (G2) is the graph obtained from G (resp. G1) by deleting vertex v1 (v2).

First supergraphs of the Smith graphs have the following property.

Lemma 3. [12] Let G be a connected graph obtained by extending any of the Smith
graphs (Fig. 1) by a vertex of arbitrary degree. Then PG(2) < 0 (i.e. λ2(G) < 2 <
λ1(G)).

For some types of graphs, values PG (2) can easily be calculated. Let Pn

denote the path with n vertices (n− 1 edges).

Lemma 4. [12] PPn(2) = n + 2.

For a lot of treelike graphs the pro-
perty λ2 ≤ 2 can be tested in a very simple
way, namely by identifying and removing a
single cut-vertex. If such a removal decom-
poses it into two components which are both
Smith graphs, according to the interlacing
theorem we get λ2(G) = 2. A generalization
of this fact is given by the following theorem.

Theorem 1. [12] Let G be a graph of the
form displayed in Fig. 2, u being a cut-
vertex.
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Figure 2.

1◦ If at least two components of G− u are supergraphs of Smith graphs, and
if at least one of them is a proper supergraph, then λ2(G) > 2..

2◦ If at least two components of G − u are Smith graphs, and the rest are
subgraphs of Smith graphs, then λ2(G) = 2.

3◦ If at most one component of G − u is a Smith graph, and the rest are
proper subgraphs of Smith graphs, then λ2(G) < 2.

Of course, there are also a lot of cases not to be covered by this theorem (one
proper supergraph and the rest of proper subgraphs of Smith graphs). Such cases
are the subject of further investigations, and therefore we always presuppose that
Theorem 1 is not applicable.

If all cycles of a cactus have the unique common vertex we say that they form
a bundle. Since in this case the problem of finding all maximal reflexive cactuses is
harder than otherwise, it should be treated separately.



58 Bojana Mihailović, Zoran Radosavljević

All maximal reflexive bicyclic graphs with the bridge between the cycles have
been found in [12]. An interesting part of the result, which is important for the
result of this paper, is contained in the following theorem. Let two cycles of arbi-
trary lengths be joined by a bridge whose vertices are c1 and c2, and let c1c3 be
additional pendent edge.

Theorem 2. ([12], for a variant proof see also [11]) If in a bicyclic graph with a
bridge between its cycles all vertices of the cycles except ci (i = 1, 2) are of degree
two and if Theorem 1 is not applicable, it is reflexive if and only if it is an induced
subgraph of a graph formed by identifying with c2 and c3 two vertices obtained by
splitting any of the Smith trees S at any vertex into two trees S1 and S2 (Fig. 3(a)),
or of the graph of Fig. 3 (b) for `1 = `2 = 0.

(a) (b) (c)

Figure 3.
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˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇ ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

Obviously, if max(`1, `2) ≥ 1, the graph of the case (b) fits in (a).
The possibility of splitting a given Smith tree at any vertex and leaning

its parts S1 and S2 on c2 and c3 (e.g. as in Fig. 3(c)) produces an interesting
phenomenon, which we will call pouring of Smith trees (between the vertices c2

and c3).

Naturally, this description includes also leaning of a
whole Smith tree on c2, while c3 remains an end-vertex.
But since a cycle is a Smith graph too, we finally find out
that the tricyclic graph T0 of Fig. 4 is also a maximal re-
flexive graph, being the only maximal reflexive cactus with
more than two cycles possessing a bridge between its cycles
and to which Theorem 1 cannot be applied [12].

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

c ċ̇̇
˙̇ ˙̇̇̇˙ ˙̇̇̇̇

˙̇̇̇̇ ˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇ ˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇̇

˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇̇̇
˙̇̇ccc1 c2

c3

T0

Figure 4.

Notice that leaning a whole Smith graph at c3 produces a situation covered
by Theorem 1.

Reflexive treelike graphs with more than three cycles have been considered
in [10] and [11].

Theorem 3. ([10], [11]) A reflexive cactus to which Theorem 1 cannot be applied
and whose cycles do not make a bundle has at most five cycles. The only such
graphs with five cycles, which are all maximal, are the four families of graphs Q1,
Q2, T1 and T2 displayed in Fig. 5.

The case of four cycles has been solved in [10] and [11].The solution (set of
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all maximal reflexive graphs in this class) includes also several cases of pouring of
Smith trees.

(a) (b) (c) (d)

Figure 5.

c1 c4

c2

c3

Q1

c cc
c ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇ ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇
˙̇̇̇̇ ˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇˙̇̇̇˙˙̇̇̇˙˙̇̇̇̇

˙̇̇̇̇˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇

��

@@

@@

�� c1 c4

c2

c3

Q2

c cc
c ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇ ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇
��

@@

@@

��

c1

c3

c2

T1 c c
c˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇
˙̇̇̇̇ ˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇˙̇̇̇˙˙̇̇̇˙˙̇̇̇̇

˙̇̇̇̇˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇ ˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇̇

˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇̇̇
˙̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇

˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇

c1

c3

c2

T2 c c
c˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇
˙̇̇̇̇ ˙̇̇̇̇̇
˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇ ˙̇̇̇˙ ˙̇̇̇˙ ˙̇̇̇̇ ˙̇̇̇̇ ˙̇̇̇̇̇

˙̇̇̇̇̇̇̇
˙̇̇̇̇̇˙̇̇̇̇˙̇̇̇̇˙̇̇̇̇

˙̇̇̇̇
˙̇̇̇̇
˙̇̇̇̇
˙̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇

˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

3. THE CASE OF THREE CYCLES

Suppose that the cycles of a tricyclic reflexive cactus do not form a bundle.
Then one of them is the central cycle (it has touching vertices with the rest two
ones, which will be called outer cycles). If the two touching vertices of the central
cycle are not adjacent, it must be a quadrangle (otherwise, Theorem 1 says that
such a cactus is not reflexive). If these vertices are adjacent and if the central cycle
is triangle or quadrangle, according to Theorem 3 such cases allow adding of new
cycles, which then can be replaced by Smith trees ([10], [11]), and they are to
be considered separately. If the central cycle is at least pentagon, such a reflexive
cactus cannot have more than three cycles. These are the four characteristic cases
of tricyclic reflexive cactuses (Fig. 6).

Figure 6.

c cc
c˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇ ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

@@

��

��

@@

(1)

c cc˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇ ˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

@@ ��

(2)

c c
c c
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
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(4)

(` > 3)
˙̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇

˙̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇

The result of this paper gives a class of maximal reflexive tricyclic cactuses
within the scope of the case (1).

4. POURING OF A PAIR OF SMITH TREES AND A CLASS OF
MAXIMAL REFLEXIVE TRICYCLIC CACTUSES

The family of graphs of Fig. 3 is a set of maximal reflexive cactuses within
the class of bicyclic graphs with a bridge between the cycles. This set can also be
described in the following way: starting from the graph T0 of Fig. 4, let us replace
one of the cycles at the vertex c2 by any of Smith trees, and let us pour it between
c2 and c3.
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˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
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˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
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But the natural next step is to do the same with both cycles at c2.
Lemma 5. Let the unicyclic cactus G
of Fig. 7(a) (m is the length of the cycle)
be such that the trees of Fig. 7(b) and (c)
(obtained by identifying c-vertices of S1 and
S2, and also S′

1 and S′
2) are Smith trees.

Then λ2(G) = 2, and every extension of G
by a vertex joined to any vertex of S1, S′

1, S2

or S′
2 implies λ2 > 2.
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����S2 S′

2
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Figure 8.

Proof. Applying Lemma 2 to the graph G1 of Fig. 8 (with respect to the vertex
c2) we get

(1) PG1(2) = 2PS1−c2(2)PS′
1−c2(2)− PS′

1−c2(2)
∑

d∈S1∩adj c2

PS1−c2−d(2)

−PS1−c2(2)
∑

d∈S′
1∩adjc2

PS′
1−c2−d(2)

(where adj c2 means the set of vertices adjacent to c2), and the corresponding
expression for PG2(2). For the sake of brevity let us introduce∑

d∈S1∩adj c2

PS1−c2−d(2) =
∑

1,
∑

d∈S′
1∩adj c2

PS′
1−c2−d(2) =

∑′
1,

and the corresponding
∑

2 and
∑′

2 in PG2(2). Now, let us apply Lemma 2 to
the whole graph G with respect to c1. Putting PSi−ci

(2) = Pi, PS′
i−ci

(2) = P ′
i ,

(i = 1, 2) and applying (1) and Lemma 4 we find

(2) PG(2) = 2mPG1(2)PG2(2)− 2(m− 1)PG1(2)PG2(2)−mPG1(2)PG2−c3(2)

−mPG2(2)PG1−c2(2)− 2PG1(2)PG2(2)

= −m

((
2P1P

′
1 − P ′

1

∑
1 − P1

∑′
1

)
P2P

′
2 +

(
2P2P

′
2 − P ′

2

∑
2 − P2

∑′
2

)
P1P

′
1

)
= m

(
− 4P1P

′
1P2P

′
2 + P1P

′
1P

′
2

∑
2 + P1P

′
1P2

∑′
2 + P ′

1P2P
′
2

∑
1 + P1P2P

′
2

∑′
1

)
.

But since the graphs of Fig. 7 (b) and (c) are Smith graphs, we get

(3) P (2) = 2P1P2 − P1

∑
2 − P2

∑
1 = 0
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implying

(4) P1

∑
2 + P2

∑
1 = 2P1P2,

and analogously

(3′) P (2) = 2P ′
1P

′
2 − P ′

1

∑′
2 − P ′

2

∑′
1 = 0,

(4′) P ′
1

∑′
2 + P ′

2

∑′
1 = 2P ′

1P
′
2.

Application of (4) and (4’) to (2) gives PG(2) = 0.

On the other hand, if at least one of the graphs of Fig. 7 (b) and (c) is a
Smith tree extended by one vertex (joined to an arbitrary one), then by Lemma
3, in the relations (3) and (3′) we have P (2) < 0, which changes (4) and (4′) into
inequalities. Applying them to (2) we get PG (2) > 0. Analogously, if at least one
of those two graphs is a proper subgraph of a Smith tree, then PG(2) < 0. Since
PG(λ) = det(λI − A) > 0 for λ > λ1 and PG(λ) < 0 for λ2 < λ < λ1, we see
that PG(2) = 0 implies λ2(G) = 2 and that λ2(G) > 2 (λ2(G) < 2) if PG(2) > 0
(PG(2) < 0 resp.). This completes the proof of the Lemma.

This result enables describing a family of maximal tricyclic reflexive cactuses.

Theorem 4. (The main result) Let a tricyclic cactus have the cyclic structure as
that of Fig. 6(1), let S1, S′

1, S2 and S′
2 be parts of two Smith trees as described in

Lemma 5 (Fig. 7), and let them be leaned on the vertices c2 and c3 of the quadrangle
as shown at Fig. 9. Then all graphs of this set are maximal reflexive graphs.
Proof. If we join two arbitrary cycles by the path
c1c2c4 of length 2, by Theorem 1 we find λ2 = 2. If
we introduce a new vertex c3 and join it to c2 and
c4, by Lemma 2 again P (2) = 0 and λ2 = 2. It
follows now by Corollary 1 and induction that arbitrary
extension of this graph by trees leaned on c2 and c3

preserves the property P (2) = 0 and we should find
out which of such graphs have just λ2 = 2. But one
can make sure that all graphs of Fig. 9 have λ2 = 2.
On the other hand, these graphs cannot be extended
at any vertex of its outer cycles, including c1 and
c4, since then, after removing e.g. c3 and applying
Theorem 1 to c2, we find λ2 > 2. Also, they cannot be

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
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˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇

˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇
˙̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇̇˙̇̇̇̇̇̇̇˙̇̇̇
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extended at any other vertex, because if we do it by a single new vertex, according
to Lemma 5 we see that a subgraph of it has λ2 > 2. Thus, all graphs of Fig. 9 are
maximal reflexive cactuses and the proof is complete.

Of course, the result includes the possibility of leaning a whole Smith tree
on c2 and another Smith tree on c3, or leaning two Smith trees on one of these
two vertices. This is the obvious first step suggested by the graphs Q1 and Q2 of
Theorem 3, and thus Theorem 4 appears as a natural generalization of Theorem
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3 and the corresponding results concerning maximal reflexive cactuses with four
cycles [11] (instead of two intact Smith trees, we have their pouring between c2

and c3).
It should be noted here that this family does not

include all maximal reflexive graphs generated by the
graph of Fig. 6 (1). In the variety of assumptions for the
trees leaned on c2 and c3 we can recognize cases which fit
in Theorem 4 and those which have to be investigated in
some other way. In fact, whenever Theorem 4 cannot be
applied, we have the situation that a proper supergraph
S of a Smith tree is leaned e. g. on c2 (without or
together with some additional parts also leaned on
c2), and that S is such a tree that after removing c2

it becomes a proper subgraph of a Smith tree (since
otherwise Theorem 1 could be applied). The process of
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finding these remaining maximal reflexive graphs necessitates a careful discussion
of particular cases and it will be the subject of some subsequent paper.
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