UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 16 (2005), 48–54. Available electronically at http://pefmath.etf.bg.ac.yu

ON VOLUMES OF *n*-DIMENSIONAL PARALLELEPIPEDS IN ℓ^p SPACES

H. Gunawan, W. Setya-Budhi, Mashadi, S. Gemawati

Given a linearly independent set of n vectors in a normed space, we are interested in computing the "volume" of the *n*-dimensional parallelepiped spanned by them. In ℓ^p $(1 \le p < \infty)$, we can use the known semi-inner product and obtain, in general, n! ways of doing it, depending on the order of the vectors. We show, however, that all resulting "volumes" satisfy one common inequality.

1. INTRODUCTION

On a normed space $(X,\|\cdot\|),$ the functional $g:X^2\to\mathbb{R}$ defined by the formula

$$g(x,y) := \frac{\|x\|}{2} (\lambda_+(x,y) + \lambda_-(x,y)),$$

where

$$\lambda_{\pm}(x,y) := \lim_{t \to \pm 0} t^{-1} \big(\|x + ty\| - \|x\| \big),$$

satisfies the following properties:

- (a) $g(x,x) = ||x||^2$ for all $x \in X$;
- (b) $g(\alpha x, \beta y) = \alpha \beta g(x, y)$ for all $x, y \in X, \ \alpha, \beta \in \mathbb{R}$;
- (c) $g(x, x + y) = ||x||^2 + g(x, y)$ for all $x, y \in X$;
- (d) $|g(x,y)| \le ||x|| ||y||$ for all $x, y \in X$.

If, in addition, the functional g(x, y) is linear in $y \in X$, it is called a *semi-inner* product on X (see [3, 4]). For instance, the functional

(1)
$$g(x,y) := \|x\|_p^{2-p} \sum_k |x_k|^{p-1} \operatorname{sgn}(x_k) y_k, \quad x = (x_k), \ y = (y_k) \in \ell^p,$$

²⁰⁰⁰ Mathematics Subject Classification: 46B20, 46B45, 46C50, 46C99

Keywords and Phrases: n-dimensional parallelepipeds, semi-inner products, orthogonal projection in normed spaces, n-norms, ℓ^p spaces

defines a semi-inner product on the space ℓ^p of *p*-summable sequences of real numbers, for $1 \leq p < \infty$. (Here $\|\cdot\|_p$ is the usual norm on ℓ^p .)

Using a semi-inner product g, one may define the notion of orthogonality on X. In particular, we can define

$$x \perp_g y \Leftrightarrow g(x, y) = 0.$$

(Note that since g is in general not commutative, $x \perp_g y$ does not imply that $y \perp_g x$.) Further, one can also define the g-orthogonal projection of y on x by

$$y_x := \frac{g(x,y)}{\|x\|^2} x,$$

and call $y - y_x$ the *g*-orthogonal complement of *y* on *x*. Notice here that $x \perp_g y - y_x$.

In general, given a vector $y \in X$ and a subspace $S = \text{span}\{x_1, \ldots, x_k\}$ of X with $\Gamma(x_1, \ldots, x_k) := \det(g(x_i, x_j)) \neq 0$, we can define the *g*-orthogonal projection of y on S by

$$y_{S} := -\frac{1}{\Gamma(x_{1}, \dots, x_{k})} \begin{vmatrix} 0 & x_{1} & \dots & x_{k} \\ g(x_{1}, y) & g(x_{1}, x_{1}) & \dots & g(x_{1}, x_{k}) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{k}, y) & g(x_{k}, x_{1}) & \dots & g(x_{k}, x_{k}) \end{vmatrix}$$

for which its orthogonal complement $y - y_S$ is given by

$$y - y_S = \frac{1}{\Gamma(x_1, \dots, x_k)} \begin{vmatrix} y & x_1 & \dots & x_k \\ g(x_1, y) & g(x_1, x_1) & \dots & g(x_1, x_k) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_k, y) & g(x_k, x_1) & \dots & g(x_k, x_k) \end{vmatrix}$$

Observe here that $x_i \perp_g y - y_s$ for each $i = 1, \ldots, k$.

Next, given a finite sequence of linearly independent vectors x_1, \ldots, x_n $(n \ge 2)$ in X, we can construct a *left g-orthogonal sequence* x_1^*, \ldots, x_n^* as in [4]: Put $x_1^* := x_1$ and, for $i = 2, \ldots, n$, let

(2)
$$x_i^* := x_i - (x_i)_{S_{i-1}}$$

where $S_{i-1} = \text{span}\{x_1^*, \ldots, x_{i-1}^*\}$. Then clearly $x_i^* \perp_g x_j^*$ for $i, j = 1, \ldots, n$ with i < j. Having done so, we may now define the "volume" of the *n*-dimensional parallelepiped spanned by x_1, \ldots, x_n in X to be

(3)
$$V(x_1, \dots, x_n) := \prod_{i=1}^n \|x_i^*\|.$$

Due to the limitation of g, however, $V(x_1, \ldots, x_n)$ may not be invariant under permutations of (x_1, \ldots, x_n) .

In the following section, we shall consider the parallelepipeds spanned by n linearly independent vectors in ℓ^p $(1 \le p < \infty)$. Our main result shows that their "volumes" satisfy one common inequality, which involves the natural *n*-norm of those vectors in ℓ^p .

2. MAIN RESULT

Suppose, hereafter, that $1 \leq p < \infty$. The so-called (natural) *n*-norm on ℓ^p is the functional $\|\cdot, \ldots, \cdot\|_p : (\ell^p)^n \to \mathbb{R}$ defined by the formula

$$||x_1,\ldots,x_n||_p := \left(\frac{1}{n!}\sum_{j_n}\cdots\sum_{j_1}\left|\left|\begin{array}{cccc}x_{1j_1}&\ldots&x_{1j_n}\\\vdots&\ddots&\vdots\\x_{nj_1}&\ldots&x_{nj_n}\end{array}\right|\right|^p\right)^{1/p}$$

(see [1]). (Here the outer $|\cdots|$ denotes the absolute value, while the inner $|\cdots|$ denotes the determinant.) For p = 2, we have $||x_1, \ldots, x_n||_2 = \sqrt{\det(\langle x_i, x_j \rangle)}$, which represents the Euclidean volume of the *n*-dimensional parallelepiped spanned by x_1, \ldots, x_n in ℓ^2 . (Here $\langle \cdot, \cdot \rangle$ denotes the usual inner product on ℓ^2 .) For n = 1, the 1-norm coincides with the usual norm on ℓ^p . The *n*-norm $||\cdot, \ldots, \cdot||_p$ on ℓ^p satisfies the following four basic properties:

- (a) $||x_1, \ldots, x_n||_p = 0$ if and only if x_1, \ldots, x_n are linearly dependent;
- (b) $||x_1, \ldots, x_n||_p$ is invariant under permutation;
- (c) $\|\alpha x_1, x_2, \dots, x_n\|_p = |\alpha| \|x_1, x_2, \dots, x_n\|_p$ for any $\alpha \in \mathbb{R}$;
- (d) $||x_1 + x'_1, x_2, \dots, x_n||_p \le ||x_1, x_2, \dots, x_n||_p + ||x'_1, x_2, \dots, x_n||_p.$

Further properties of this functional on ℓ^p can be found in [1]. See also [2, 5], and the references therein, for related works.

Our theorem below relates the "volume" $V(x_1, \ldots, x_n)$ defined by (3) and the *n*-norm $||x_1, \ldots, x_n||_p$, which also represents a volume of the *n*-dimensional parallelepiped spanned by x_1, \ldots, x_n in ℓ^p .

We assume hereafter that $n \geq 2$.

Theorem 1. Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in ℓ^p . For any permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$, define $V(x_{i_1}, \ldots, x_{i_n})$ as in (3) by using the semi-inner product g in (1), with $x_1^* = x_{i_1}$ and so forth as in (2). Then we have

$$V(x_{i_1},\ldots,x_{i_n}) \le (n!)^{1/p} ||x_1,\ldots,x_n||_p.$$

The following example illustrates the situation in ℓ^1 . Let $x_1 = (1, 0, 0, ...)$ and $x_2 = (1, 1, 0, ...)$. Put $x_1^* = x_1$ and $x_2^* = x_2 - (x_2)_{x_1} = (0, 1, 0, ...)$. Then we have $V(x_1, x_2) = ||x_1^*||_1 ||x_2^*||_1 = 1 \cdot 1 = 1$. But if we put $x_1^* = x_2$ and $x_2^* = x_1 - (x_1)_{x_2} = (\frac{1}{2}, -\frac{1}{2}, 0, ...)$, then we have $V(x_2, x_1) = ||x_1^*||_1 ||x_2^*||_1 = 2 \cdot 1 = 2$. Meanwhile,

$$\|x_1, x_2\|_1 = \frac{1}{2} \sum_j \sum_k \left| \begin{vmatrix} x_{1j} & x_{1k} \\ x_{2j} & x_{2k} \end{vmatrix} \right| = \frac{1}{2} \left(\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \right) = \frac{1}{2} (1+1) = 1.$$

Hence we see that $V(x_{i_1}, x_{i_2}) \leq 2 ||x_1, x_2||_1$ for each permutation (i_1, i_2) of (1, 2).

Proof of Theorem 1. Since $||x_1, \ldots, x_n||_p$ is invariant under permutation, it suffices for us to show that

$$V(x_1,...,x_n) \le (n!)^{1/p} ||x_1,...,x_n||_p.$$

Recall that $V(x_1, \ldots, x_n) = \prod_{i=1}^n ||x_i^*||$, where x_1^*, \ldots, x_n^* is the left *g*-orthogonal sequence constructed from x_1, \ldots, x_n (with $x_1^* = x_1$ and so forth as in (2)). From the construction of x_1^*, \ldots, x_n^* , we have

$$x_n^* = \frac{1}{\Gamma(x_1^*, \dots, x_{n-1}^*)} \begin{vmatrix} x_n & x_1^* & \dots & x_{n-1}^* \\ g(x_1^*, x_n) & g(x_1^*, x_1^*) & \dots & g(x_1^*, x_{n-1}^*) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{n-1}^*, x_n) & g(x_{n-1}^*, x_1^*) & \dots & g(x_{n-1}^*, x_{n-1}^*) \end{vmatrix} .$$

But $\Gamma(x_1^*, \dots, x_{n-1}^*) = \prod_{i=1}^{n-1} ||x_i^*||_p^2$, and so

$$\|x_n^*\|_p = \prod_{i=1}^{n-1} \|x_i^*\|_p^{-2} \left(\sum_{j_n} \left\| \begin{array}{ccc} x_{nj_n} & x_{1j_n}^* & \dots & x_{n-1,j_n}^* \\ g(x_1^*, x_n) & g(x_1^*, x_1^*) & \dots & g(x_1^*, x_{n-1}^*) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{n-1}^*, x_n) & g(x_{n-1}^*, x_1^*) & \dots & g(x_{n-1}^*, x_{n-1}^*) \end{array} \right\|_p^p \right)^{1/p}.$$

Hence, the "volume" $V(x_1, \ldots, x_n)$ is equal to

$$\prod_{i=1}^{n-1} \|x_i^*\|_p^{-1} \left(\sum_{j_n} \left\| \begin{array}{ccc} x_{nj_n} & x_{1j_n}^* & \dots & x_{n-1,j_n}^* \\ g(x_1^*, x_n) & g(x_1^*, x_1^*) & \dots & g(x_1^*, x_{n-1}^*) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{n-1}^*, x_n) & g(x_{n-1}^*, x_1^*) & \dots & g(x_{n-1}^*, x_{n-1}^*) \end{array} \right\|_p^p \right)^{1/p} \cdot \frac{1}{p} \cdot \frac{1}$$

By using properties of determinants, we find that $V(x_1, \ldots, x_n)$ is equal to

$$\left[\sum_{j_n} \left| \prod_{i=1}^{n-1} \|x_i^*\|_p^{-1} \right| \left| \begin{array}{ccc} g(x_1^*, x_1^*) & \dots & g(x_{n-1}^*, x_1^*) & x_{1jn}^* \\ \vdots & \vdots & \ddots & \vdots \\ g(x_1^*, x_{n-1}^*) & \dots & g(x_{n-1}^*, x_{n-1}^*) & x_{n-1,jn}^* \\ g(x_1^*, x_n) & \dots & g(x_{n-1}^*, x_n) & x_{njn} \end{array} \right|^p \right)^{1/p}.$$

Since $x_1^* = x_1$ and g(x, y) is linear in y, it follows that $V(x_1, \ldots, x_n)$ is equal to

$$\left(\sum_{j_n} \left| \prod_{i=1}^{n-1} \|x_i^*\|_p^{-1} \right| \begin{array}{ccc} g(x_1^*, x_1) & \dots & g(x_{n-1}^*, x_1) & x_{1j_n} \\ \vdots & \vdots & \ddots & \vdots \\ g(x_1^*, x_{n-1}) & \dots & g(x_{n-1}^*, x_{n-1}) & x_{n-1,j_n} \\ g(x_1^*, x_n) & \dots & g(x_{n-1}^*, x_n) & x_{nj_n} \end{array} \right| \right|^p \right)^{1/p}$$

Now $g(x_i^*, x_k) = \|x_i^*\|_p^{2-p} \sum_{j_i} |x_{ij_i}|^{p-1} \operatorname{sgn}(x_{ij_i}) x_{kj_i}$, and we can take the sums out of the determinant, so that the above expression is dominated by

$$\left(\sum_{j_n} \left(\sum_{j_{n-1}} \cdots \sum_{j_1} \frac{|x_{n-1,j_{n-1}}|^{p-1}}{\|x_{n-1}^*\|_p^{p-1}} \cdots \frac{|x_{1j_1}|^{p-1}}{\|x_1^*\|_p^{p-1}} \left\| \begin{array}{ccc} x_{1j_1} & \cdots & x_{1j_n} \\ \vdots & \ddots & \vdots \\ x_{nj_1} & \cdots & x_{nj_n} \end{array} \right\| \right)^p\right)^{1/p}.$$

By HÖLDER's inequality (applied to the multiple series inside the inner square brackets), the last expression is dominated by

$$\left(\sum_{j_n}\sum_{j_{n-1}}\cdots\sum_{j_1}\left\|\begin{array}{ccc}x_{1j_1}&\ldots&x_{1j_n}\\\vdots&\ddots&\vdots\\x_{nj_1}&\ldots&x_{nj_n}\end{array}\right\|^p\right)^{1/p},$$

which is equal to $(n!)^{1/p} || x_1, \ldots, x_n ||_p$. This proves our theorem.

3. CONCLUDING REMARKS

Unlike in inner product spaces, we generally do not have an analogue of HADAMARD's inequality (see, e.g., [6, p. 597])

$$V(x_1,\ldots,x_n) \le \prod_{i=1}^n \|x_i\|.$$

For a counterexample, take $x_1 = (1, 2, 0, ...)$ and $x_2 = (2, -1, 0, ...)$ in ℓ^1 . Then one may check that $V(x_1, x_2) = V(x_2, x_1) = 3 \cdot \frac{10}{3} > ||x_1||_1 ||x_2||_1$. (This adds a reason why we write the word "volume" between quotation marks for $V(x_1, ..., x_n)$.)

It is worth noting, however, that the analogue of Hadamard's inequality is satisfied particularly by the *n*-norm $\|\cdot, \ldots, \cdot\|_1$ on ℓ^1 . Indeed, the inequality

$$||x_1, \dots, x_n||_1 \le \prod_{i=1}^n ||x_i||_1$$

holds for every x_1, \ldots, x_n in ℓ^1 (see [1]). Hence the *n*-norm $\|\cdot, \ldots, \cdot\|_1$ has the desirable properties for volumes of *n*-dimensional parallelepipeds in ℓ^1 .

The reader might also wonder why we do not define the volume of the *n*-dimensional parallelepiped spanned by x_1, \ldots, x_n in X to be

$$V(x_1,\ldots,x_n):=\sqrt{\Gamma(x_1,\ldots,x_n)},$$

instead of (3). Although $\Gamma(x_1, \ldots, x_n) = \det(g(x_i, x_j))$ is invariant under permutation, there are a few problems with this formula. First, $\Gamma(x_1, \ldots, x_n)$ may be negative when $n \geq 3$. For example, take $x_1 = (1, 2, -1/10, 0, \ldots)$, $x_2 = (2, 1, 1/10, 0, \ldots)$, and $x_3 = (1, -1, 1, 0, \ldots)$ in ℓ^1 . Then one may check that $\Gamma(x_1, x_2, x_3) < 0$. Next, for n = 2, we can have $\Gamma(x_1, x_2) = 0$ even though x_1 and x_2 are linearly dependent. For example, take $x_1 = (1, 2, 0, \ldots)$ and $x_2 = (2, 1, 0, \ldots)$ in ℓ^1 . Clearly x_1 and x_2 are linearly independent. But one may check that $g(x_i, x_j) = 9$ for i, j = 1, 2, and so $\Gamma(x_1, x_2) = \begin{vmatrix} 9 & 9 \\ 9 & 9 \end{vmatrix} = 0$. (This explains why we require $\Gamma(x_1, \ldots, x_n) \neq 0$ when we define the g-orthogonal projection on the subspace $S = \operatorname{span}\{x_1, \ldots, x_n\}$.)

One should also note that the analogue of HADAMARD's inequality is not satisfied by $|\Gamma|$, that is, the inequality

$$|\Gamma(x_1,\ldots,x_n)| \le \prod_{i=1}^n ||x_i||^2$$

does not hold. For a counterexample, take $x_1 = (1, 2, 0, ...)$ and $x_2 = (2, -1, 0, ...)$ in ℓ^1 . Then we have $|\Gamma(x_1, x_2)| = 90 > ||x_1||_1^2 ||x_2||_1^2$. Nevertheless, we have the following result for Γ . (We leave its proof to the reader.)

Theorem 2. The inequality

$$|\Gamma(x_1,\ldots,x_n)| \le (n!)^{1/p} ||x_1,\ldots,x_n||_p \prod_{i=1}^n ||x_i||_p$$

holds for every x_1, \ldots, x_n in ℓ^p .

Acknowledgement. The research is supported by the Directorate General of Higher Education of Republic of Indonesia through Hibah Pekerti I Program, 2003/2004.

REFERENCES

- 1. H. GUNAWAN: The space of p-summable sequences and its natural n-norm. Bull. Austral. Math. Soc. 64, (2001), 137–147.
- H. GUNAWAN, MASHADI: On n-normed spaces. Int. J. Math. Math. Sci., 27(10) (2001), 631–639.
- P. M. MILIČIĆ: Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Publ. Inst. Math. (Beograd), 42(56)(1987), 63–70.

- P. M. MILIČIĆ: On the Gram-Schmidt projection in normed spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89–96.
- 5. A. MISIAK: *n-inner product spaces*. Math. Nachr., **140** (1989), 299–319.
- 6. D. S. MITRINOVIĆ, J. E. PEČARIĆ, A.M. FINK: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993).

H. Gunawan, W. Setya-Budhi
Department of Mathematics,
Bandung Institute of Technology,
Bandung 40132, Indonesia
E-mail: hgunawan@dns.math.itb.ac.id

wono@dns.math.itb.ac.id

(Received July 15, 2004)

Mashadi, S. Gemawati Department of Mathematics, University of Riau, Pekanbaru 28293, Indonesia

E-mail: mash-mat@unri.ac.id