ON VOLUMES OF n-DIMENSIONAL PARALLELEPIPEDS IN ℓ^{p} SPACES

H. Gunawan, W. Setya-Budhi, Mashadi, S. Gemawati

Abstract

Given a linearly independent set of n vectors in a normed space, we are interested in computing the "volume" of the n-dimensional parallelepiped spanned by them. In $\ell^{p}(1 \leq p<\infty)$, we can use the known semi-inner product and obtain, in general, n ! ways of doing it, depending on the order of the vectors. We show, however, that all resulting "volumes" satisfy one common inequality.

1. INTRODUCTION

On a normed space $(X,\|\cdot\|)$, the functional $g: X^{2} \rightarrow \mathbb{R}$ defined by the formula

$$
g(x, y):=\frac{\|x\|}{2}\left(\lambda_{+}(x, y)+\lambda_{-}(x, y)\right)
$$

where

$$
\lambda_{ \pm}(x, y):=\lim _{t \rightarrow \pm 0} t^{-1}(\|x+t y\|-\|x\|)
$$

satisfies the following properties:
(a) $g(x, x)=\|x\|^{2}$ for all $x \in X$;
(b) $\quad g(\alpha x, \beta y)=\alpha \beta g(x, y)$ for all $x, y \in X, \alpha, \beta \in \mathbb{R}$;
(c) $\quad g(x, x+y)=\|x\|^{2}+g(x, y)$ for all $x, y \in X$;
(d) $|g(x, y)| \leq\|x\|\|y\|$ for all $x, y \in X$.

If, in addition, the functional $g(x, y)$ is linear in $y \in X$, it is called a semi-inner product on X (see $[\mathbf{3}, 4])$. For instance, the functional

$$
\begin{equation*}
g(x, y):=\|x\|_{p}^{2-p} \sum_{k}\left|x_{k}\right|^{p-1} \operatorname{sgn}\left(x_{k}\right) y_{k}, \quad x=\left(x_{k}\right), y=\left(y_{k}\right) \in \ell^{p} \tag{1}
\end{equation*}
$$

defines a semi-inner product on the space ℓ^{p} of p-summable sequences of real numbers, for $1 \leq p<\infty$. (Here $\|\cdot\|_{p}$ is the usual norm on ℓ^{p}.)

Using a semi-inner product g, one may define the notion of orthogonality on X. In particular, we can define

$$
x \perp_{g} y \Leftrightarrow g(x, y)=0
$$

(Note that since g is in general not commutative, $x \perp_{g} y$ does not imply that $y \perp_{g} x$.) Further, one can also define the g-orthogonal projection of y on x by

$$
y_{x}:=\frac{g(x, y)}{\|x\|^{2}} x
$$

and call $y-y_{x}$ the g-orthogonal complement of y on x. Notice here that $x \perp_{g} y-y_{x}$.
In general, given a vector $y \in X$ and a subspace $S=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ of X with $\Gamma\left(x_{1}, \ldots, x_{k}\right):=\operatorname{det}\left(g\left(x_{i}, x_{j}\right)\right) \neq 0$, we can define the g-orthogonal projection of y on S by

$$
y_{S}:=-\frac{1}{\Gamma\left(x_{1}, \ldots, x_{k}\right)}\left|\begin{array}{cccc}
0 & x_{1} & \ldots & x_{k} \\
g\left(x_{1}, y\right) & g\left(x_{1}, x_{1}\right) & \ldots & g\left(x_{1}, x_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{k}, y\right) & g\left(x_{k}, x_{1}\right) & \ldots & g\left(x_{k}, x_{k}\right)
\end{array}\right|
$$

for which its orthogonal complement $y-y_{S}$ is given by

$$
y-y_{S}=\frac{1}{\Gamma\left(x_{1}, \ldots, x_{k}\right)}\left|\begin{array}{cccc}
y & x_{1} & \ldots & x_{k} \\
g\left(x_{1}, y\right) & g\left(x_{1}, x_{1}\right) & \ldots & g\left(x_{1}, x_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{k}, y\right) & g\left(x_{k}, x_{1}\right) & \ldots & g\left(x_{k}, x_{k}\right)
\end{array}\right| .
$$

Observe here that $x_{i} \perp_{g} y-y_{S}$ for each $i=1, \ldots, k$.
Next, given a finite sequence of linearly independent vectors x_{1}, \ldots, x_{n} $(n \geq 2)$ in X, we can construct a left g-orthogonal sequence $x_{1}^{*}, \ldots, x_{n}^{*}$ as in [4]: Put $x_{1}^{*}:=x_{1}$ and, for $i=2, \ldots, n$, let

$$
\begin{equation*}
x_{i}^{*}:=x_{i}-\left(x_{i}\right)_{S_{i-1}}, \tag{2}
\end{equation*}
$$

where $S_{i-1}=\operatorname{span}\left\{x_{1}^{*}, \ldots, x_{i-1}^{*}\right\}$. Then clearly $x_{i}^{*} \perp_{g} x_{j}^{*}$ for $i, j=1, \ldots, n$ with $i<j$. Having done so, we may now define the "volume" of the n-dimensional parallelepiped spanned by x_{1}, \ldots, x_{n} in X to be

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{n}\right):=\prod_{i=1}^{n}\left\|x_{i}^{*}\right\| \tag{3}
\end{equation*}
$$

Due to the limitation of g, however, $V\left(x_{1}, \ldots, x_{n}\right)$ may not be invariant under permutations of $\left(x_{1}, \ldots, x_{n}\right)$.

In the following section, we shall consider the parallelepipeds spanned by n linearly independent vectors in $\ell^{p}(1 \leq p<\infty)$. Our main result shows that their "volumes" satisfy one common inequality, which involves the natural n-norm of those vectors in ℓ^{p}.

2. MAIN RESULT

Suppose, hereafter, that $1 \leq p<\infty$. The so-called (natural) n-norm on ℓ^{p} is the functional $\|\cdot, \ldots, \cdot\|_{p}:\left(\ell^{p}\right)^{n} \rightarrow \mathbb{R}$ defined by the formula

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{p}:=\left(\frac{1}{n!} \sum_{j_{n}} \cdots \sum_{j_{1}}| | \begin{array}{ccc}
x_{1 j_{1}} & \ldots & x_{1 j_{n}} \\
\vdots & \ddots & \vdots \\
x_{n j_{1}} & \ldots & x_{n j_{n}}
\end{array} \|\left.\right|^{p}\right)^{1 / p}
$$

(see [1]). (Here the outer $|\cdots|$ denotes the absolute value, while the inner $|\cdots|$ denotes the determinant.) For $p=2$, we have $\left\|x_{1}, \ldots, x_{n}\right\|_{2}=\sqrt{\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right)}$, which represents the Euclidean volume of the n-dimensional parallelepiped spanned by x_{1}, \ldots, x_{n} in ℓ^{2}. (Here $\langle\cdot, \cdot\rangle$ denotes the usual inner product on ℓ^{2}.) For $n=1$, the 1 -norm coincides with the usual norm on ℓ^{p}. The n-norm $\|\cdot, \ldots, \cdot\|_{p}$ on ℓ^{p} satisfies the following four basic properties:
(a) $\left\|x_{1}, \ldots, x_{n}\right\|_{p}=0$ if and only if x_{1}, \ldots, x_{n} are linearly dependent;
(b) $\left\|x_{1}, \ldots, x_{n}\right\|_{p}$ is invariant under permutation;
(c) $\left\|\alpha x_{1}, x_{2}, \ldots, x_{n}\right\|_{p}=|\alpha|\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|_{p}$ for any $\alpha \in \mathbb{R}$;
(d) $\left\|x_{1}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right\|_{p} \leq\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|_{p}+\left\|x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right\|_{p}$

Further properties of this functional on ℓ^{p} can be found in [1]. See also [2, 5], and the references therein, for related works.

Our theorem below relates the "volume" $V\left(x_{1}, \ldots, x_{n}\right)$ defined by (3) and the n-norm $\left\|x_{1}, \ldots, x_{n}\right\|_{p}$, which also represents a volume of the n-dimensional parallelepiped spanned by x_{1}, \ldots, x_{n} in ℓ^{p}.

We assume hereafter that $n \geq 2$.
Theorem 1. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a linearly independent set of vectors in ℓ^{p}. For any permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $(1, \ldots, n)$, define $V\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ as in (3) by using the semi-inner product g in (1), with $x_{1}^{*}=x_{i_{1}}$ and so forth as in (2). Then we have

$$
V\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \leq(n!)^{1 / p}\left\|x_{1}, \ldots, x_{n}\right\|_{p}
$$

The following example illustrates the situation in ℓ^{1}. Let $x_{1}=(1,0,0, \ldots)$ and $x_{2}=(1,1,0, \ldots)$. Put $x_{1}^{*}=x_{1}$ and $x_{2}^{*}=x_{2}-\left(x_{2}\right)_{x_{1}}=(0,1,0, \ldots)$. Then we have $V\left(x_{1}, x_{2}\right)=\left\|x_{1}^{*}\right\|_{1}\left\|x_{2}^{*}\right\|_{1}=1 \cdot 1=1$. But if we put $x_{1}^{*}=x_{2}$ and $x_{2}^{*}=$ $x_{1}-\left(x_{1}\right)_{x_{2}}=\left(\frac{1}{2},-\frac{1}{2}, 0, \ldots\right)$, then we have $V\left(x_{2}, x_{1}\right)=\left\|x_{1}^{*}\right\|_{1}\left\|x_{2}^{*}\right\|_{1}=2 \cdot 1=2$. Meanwhile,

$$
\left\|x_{1}, x_{2}\right\|_{1}=\frac{1}{2} \sum_{j} \sum_{k}| | \begin{array}{ll}
x_{1 j} & x_{1 k} \\
x_{2 j} & x_{2 k}
\end{array} \left\lvert\, \|=\frac{1}{2}\left(\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|+\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|\right)=\frac{1}{2}(1+1)=1 .\right.
$$

Hence we see that $V\left(x_{i_{1}}, x_{i_{2}}\right) \leq 2\left\|x_{1}, x_{2}\right\|_{1}$ for each permutation $\left(i_{1}, i_{2}\right)$ of $(1,2)$.
Proof of Theorem 1. Since $\left\|x_{1}, \ldots, x_{n}\right\|_{p}$ is invariant under permutation, it suffices for us to show that

$$
V\left(x_{1}, \ldots, x_{n}\right) \leq(n!)^{1 / p}\left\|x_{1}, \ldots, x_{n}\right\|_{p} .
$$

Recall that $V\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left\|x_{i}^{*}\right\|$, where $x_{1}^{*}, \ldots, x_{n}^{*}$ is the left g-orthogonal sequence constructed from x_{1}, \ldots, x_{n} (with $x_{1}^{*}=x_{1}$ and so forth as in (2)). From the construction of $x_{1}^{*}, \ldots, x_{n}^{*}$, we have

$$
x_{n}^{*}=\frac{1}{\Gamma\left(x_{1}^{*}, \ldots, x_{n-1}^{*}\right)}\left|\begin{array}{cccc}
x_{n} & x_{1}^{*} & \ldots & x_{n-1}^{*} \\
g\left(x_{1}^{*}, x_{n}\right) & g\left(x_{1}^{*}, x_{1}^{*}\right) & \ldots & g\left(x_{1}^{*}, x_{n-1}^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{n-1}^{*}, x_{n}\right) & g\left(x_{n-1}^{*}, x_{1}^{*}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n-1}^{*}\right)
\end{array}\right| .
$$

But $\Gamma\left(x_{1}^{*}, \ldots, x_{n-1}^{*}\right)=\prod_{i=1}^{n-1}\left\|x_{i}^{*}\right\|_{p}^{2}$, and so

$$
\left\|x_{n}^{*}\right\|_{p}=\prod_{i=1}^{n-1}\left\|x_{i}^{*}\right\|_{p}^{-2}\left(\sum_{j_{n}}\left\|\begin{array}{cccc}
x_{n j_{n}} & x_{1 j_{n}}^{*} & \ldots & x_{n-1, j_{n}}^{*} \\
g\left(x_{1}^{*}, x_{n}\right) & g\left(x_{1}^{*}, x_{1}^{*}\right) & \ldots & g\left(x_{1}^{*}, x_{n-1}^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{n-1}^{*}, x_{n}\right) & g\left(x_{n-1}^{*}, x_{1}^{*}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n-1}^{*}\right)
\end{array}\right\|^{p}\right)^{1 / p} .
$$

Hence, the "volume" $V\left(x_{1}, \ldots, x_{n}\right)$ is equal to

$$
\prod_{i=1}^{n-1}\left\|x_{i}^{*}\right\|_{p}^{-1}\left(\sum_{j_{n}}\left\|\begin{array}{cccc}
x_{n j_{n}} & x_{1 j_{n}}^{*} & \cdots & x_{n-1, j_{n}}^{*} \\
g\left(x_{1}^{*}, x_{n}\right) & g\left(x_{1}^{*}, x_{1}^{*}\right) & \cdots & g\left(x_{1}^{*}, x_{n-1}^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{n-1}^{*}, x_{n}\right) & g\left(x_{n-1}^{*}, x_{1}^{*}\right) & \cdots & g\left(x_{n-1}^{*}, x_{n-1}^{*}\right)
\end{array}\right\|^{p}\right)^{1 / p} .
$$

By using properties of determinants, we find that $V\left(x_{1}, \ldots, x_{n}\right)$ is equal to

$$
\left[\sum_{j_{n}}\left|\prod_{i=1}^{n-1}\left\|x_{i}^{*}\right\|_{p}^{-1}\right| \begin{array}{cccc}
g\left(x_{1}^{*}, x_{1}^{*}\right) & \ldots & g\left(x_{n-1}^{*}, x_{1}^{*}\right) & x_{1, j n}^{*} \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{1}^{*}, x_{n-1}^{*}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n-1}^{*}\right) & x_{n-1, j_{n}}^{*} \\
g\left(x_{1}^{*}, x_{n}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n}\right) & x_{n j_{n}}
\end{array} \|^{p}\right)^{1 / p} .
$$

Since $x_{1}^{*}=x_{1}$ and $g(x, y)$ is linear in y, it follows that $V\left(x_{1}, \ldots, x_{n}\right)$ is equal to

$$
\left(\left.\sum_{j_{n}}\left|\prod_{i=1}^{n-1}\left\|x_{i}^{*}\right\|_{p}^{-1}\right| \begin{array}{cccc}
g\left(x_{1}^{*}, x_{1}\right) & \ldots & g\left(x_{n-1}^{*}, x_{1}\right) & x_{1 j n} \\
\vdots & \vdots & \ddots & \vdots \\
g\left(x_{1}^{*}, x_{n-1}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n-1}\right) & x_{n-1, j_{n}} \\
g\left(x_{1}^{*}, x_{n}\right) & \ldots & g\left(x_{n-1}^{*}, x_{n}\right) & x_{n j_{n}}
\end{array}\right|^{p}\right)^{1 / p} .
$$

Now $g\left(x_{i}^{*}, x_{k}\right)=\left\|x_{i}^{*}\right\|_{p}^{2-p} \sum_{j_{i}}\left|x_{i j_{i}}\right|^{p-1} \operatorname{sgn}\left(x_{i j_{i}}\right) x_{k j_{i}}$, and we can take the sums out of the determinant, so that the above expression is dominated by

$$
\left(\sum_{j_{n}}\left(\sum_{j_{n-1}} \cdots \sum_{j_{1}} \frac{\left|x_{n-1, j_{n-1}}\right|^{p-1}}{\left\|x_{n-1}^{*}\right\|_{p}^{p-1}} \cdots \frac{\left|x_{1 j_{1}}\right|^{p-1}}{\left\|x_{1}^{*}\right\|_{p}^{p-1}}\left\|\begin{array}{ccc}
x_{1 j_{1}} & \ldots & x_{1 j_{n}} \\
\vdots & \ddots & \vdots \\
x_{n j_{1}} & \ldots & x_{n j_{n}}
\end{array}\right\|\right)^{p}\right)^{1 / p}
$$

By Hölder's inequality (applied to the multiple series inside the inner square brackets), the last expression is dominated by

$$
\left(\sum_{j_{n}} \sum_{j_{n-1}} \cdots \sum_{j_{1}}\left\|\begin{array}{ccc}
x_{1 j_{1}} & \ldots & x_{1 j_{n}} \\
\vdots & \ddots & \vdots \\
x_{n j_{1}} & \ldots & x_{n j_{n}}
\end{array}\right\|^{p}\right)^{1 / p}
$$

which is equal to $(n!)^{1 / p}\left\|x_{1}, \ldots, x_{n}\right\|_{p}$. This proves our theorem.

3. CONCLUDING REMARKS

Unlike in inner product spaces, we generally do not have an analogue of HadAmard's inequality (see, e.g., [6, p. 597])

$$
V\left(x_{1}, \ldots, x_{n}\right) \leq \prod_{i=1}^{n}\left\|x_{i}\right\|
$$

For a counterexample, take $x_{1}=(1,2,0, \ldots)$ and $x_{2}=(2,-1,0, \ldots)$ in ℓ^{1}. Then one may check that $V\left(x_{1}, x_{2}\right)=V\left(x_{2}, x_{1}\right)=3 \cdot \frac{10}{3}>\left\|x_{1}\right\|_{1}\left\|x_{2}\right\|_{1}$. (This adds a reason why we write the word "volume" between quotation marks for $V\left(x_{1}, \ldots, x_{n}\right)$.)

It is worth noting, however, that the analogue of Hadamard's inequality is satisfied particularly by the n-norm $\|\cdot, \ldots, \cdot\|_{1}$ on ℓ^{1}. Indeed, the inequality

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{1} \leq \prod_{i=1}^{n}\left\|x_{i}\right\|_{1}
$$

holds for every x_{1}, \ldots, x_{n} in ℓ^{1} (see [1]). Hence the n-norm $\|\cdot, \ldots, \cdot\|_{1}$ has the desirable properties for volumes of n-dimensional parallelepipeds in ℓ^{1}.

The reader might also wonder why we do not define the volume of the n dimensional parallelepiped spanned by x_{1}, \ldots, x_{n} in X to be

$$
V\left(x_{1}, \ldots, x_{n}\right):=\sqrt{\Gamma\left(x_{1}, \ldots, x_{n}\right)}
$$

instead of (3). Although $\Gamma\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(g\left(x_{i}, x_{j}\right)\right)$ is invariant under permutation, there are a few problems with this formula. First, $\Gamma\left(x_{1}, \ldots, x_{n}\right)$ may be negative when $n \geq 3$. For example, take $x_{1}=(1,2,-1 / 10,0, \ldots), x_{2}=$ $(2,1,1 / 10,0, \ldots)$, and $x_{3}=(1,-1,1,0, \ldots)$ in ℓ^{1}. Then one may check that $\Gamma\left(x_{1}, x_{2}, x_{3}\right)<0$. Next, for $n=2$, we can have $\Gamma\left(x_{1}, x_{2}\right)=0$ even though x_{1} and x_{2} are linearly dependent. For example, take $x_{1}=(1,2,0, \ldots)$ and $x_{2}=(2,1,0, \ldots)$ in ℓ^{1}. Clearly x_{1} and x_{2} are linearly independent. But one may check that $g\left(x_{i}, x_{j}\right)=9$ for $i, j=1,2$, and so $\Gamma\left(x_{1}, x_{2}\right)=\left|\begin{array}{ll}9 & 9 \\ 9 & 9\end{array}\right|=0$. (This explains why we require $\Gamma\left(x_{1}, \ldots, x_{n}\right) \neq 0$ when we define the g-orthogonal projection on the subspace $S=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$.)

One should also note that the analogue of HADAMARD's inequality is not satisfied by $|\Gamma|$, that is, the inequality

$$
\left|\Gamma\left(x_{1}, \ldots, x_{n}\right)\right| \leq \prod_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

does not hold. For a counterexample, take $x_{1}=(1,2,0, \ldots)$ and $x_{2}=(2,-1,0, \ldots)$ in ℓ^{1}. Then we have $\left|\Gamma\left(x_{1}, x_{2}\right)\right|=90>\left\|x_{1}\right\|_{1}^{2}\left\|x_{2}\right\|_{1}^{2}$. Nevertheless, we have the following result for Γ. (We leave its proof to the reader.)
Theorem 2. The inequality

$$
\left|\Gamma\left(x_{1}, \ldots, x_{n}\right)\right| \leq(n!)^{1 / p}\left\|x_{1}, \ldots, x_{n}\right\|_{p} \prod_{i=1}^{n}\left\|x_{i}\right\|_{p}
$$

holds for every x_{1}, \ldots, x_{n} in ℓ^{p}.
Acknowledgement. The research is supported by the Directorate General of Higher Education of Republic of Indonesia through Hibah Pekerti I Program, 2003/2004.

REFERENCES

1. H. Gunawan: The space of p-summable sequences and its natural n-norm. Bull. Austral. Math. Soc. 64, (2001), 137-147.
2. H. Gunawan, Mashadi: On n-normed spaces. Int. J. Math. Math. Sci., 27(10) (2001), 631-639.
3. P. M. Miličıć: Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Publ. Inst. Math. (Beograd), 42(56)(1987), 63-70.
4. P. M. Miličić: On the Gram-Schmidt projection in normed spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89-96.
5. A. Misiak: n-inner product spaces. Math. Nachr., 140 (1989), 299-319.
6. D. S. Mitrinović, J. E. Pečarić, A.M. Fink: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993).
H. Gunawan, W. Setya-Budhi

Department of Mathematics,
Bandung Institute of Technology,
Bandung 40132, Indonesia
E-mail: hgunawan@dns.math.itb.ac.id wono@dns.math.itb.ac.id

Mashadi, S. Gemawati
Department of Mathematics, University of Riau,
Pekanbaru 28293, Indonesia
E-mail: mash-mat@unri.ac.id

