
Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. 16 (2005), 1–11.

Available electronically at http: //pefmath.etf.bg.ac.yu

SOME REMARKS REGARDING PITMAN
CLOSENESS

Beatriz Vaz de Melo Mendes, Milan Merkle

We give an equivalent definition of Pitman’s closeness criterion, in terms
of medians of the difference of loss functions. Based on that definition, we
present some relations between Pitman’s closeness and usual decision theo-
retical framework, then a result which enables comparison of estimators with
a presence of a positive or negative association, and a Rao-Blackwell type
result related to improving estimators by a conditioning.

1. INTRODUCTION

Let T1 and T2 be two estimators of a same parameter θ in a parameter space
Θ. E. J. G. Pitman [17] introduced the concept of closeness as follows: We say
that T1 is closer to θ then T2 if

(1) Pθ

(
|T1 − θ| < |T2 − θ|

)
>

1
2

,

for all θ ∈ Θ. In the paper [16] he actually found the best estimators in the sense
of (1) for several cases of interest. Besides Pitman’s original definition (1), there
are several variations on the theme. According to Rao’s definition [18], T1 is closer
than T2 if

(2) Pθ(|T1 − θ| ≤ |T2 − θ|) ≥ 1
2

,

for all θ ∈ Θ, with a strict inequality for at least one θ. Nayak [12] requires that

(3) Pθ(|T1 − θ| ≤ |T2 − θ|) ≥ Pθ(|T2 − θ| ≤ |T1 − θ|)
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for each θ ∈ Θ. Closely related to these definitions is Pitman’s measure of closeness
(nearness):

(4) PN(T1, T2, θ) = Pθ

(
|T1 − θ| ≤ |T2 − θ|

)
.

In all these definitions one can replace the absolute difference with any loss func-
tion in two variables. This is called generalized Pitman’s criterion [15, 12]. For
instance, a generalized Pitman’s measure of nearness would be

(5) GPN(T1, T2, θ) = Pθ

(
L(T1, θ) ≤ L(T2, θ)

)
.

The approach with generalized Pitman’s criterion gives an obvious way of
dealing with multidimensional parameters.

When T1 is closer to T2 in the sense of some of the above definitions, then
we say that T1 is P-better that T2 or T1 ≺ T2. It is usually hard to show the “for
at least one θ” part, and so, the vast majority of work is concentrated on showing
that one of (1)–(3) holds for every θ ∈ Θ.

Finally, it is clear that we need not restrict to parameters and their estimators
in order to measure closeness. For instance, if Z is a random variable and X, Y
are other two random variables, then we may define

GPN(X, Y, Z) = P
(
d(X, Z) ≤ d(Y, Z)

)
,

where d is some appropriate measure of distance.
Pitman’s criterion is closely related to medians, and we will give some details

in subsequent sections. For a convenience, recall that median of a random variable
X is any real number m such that

P (X ≤ m) ≥ 1
2

and P (X ≥ m) ≥ 1
2

.

Therefore, it can be seen that definition (2), or its generalized version via the loss
function, can be expressed as

(6) Med
(
L(T0, θ)− L(T, θ)

)
≤ 0,

which gives a decision-theoretic flavor to Pitman’s criterion. Of course, here a
mean is replaced by a median and the usual loss function is replaced by a difference
of two loss functions (comparative loss function in the sense of [19]. This simple
observation will be explored later in the paper.

We would occasionally need some conditions on the loss function. These are
as follows.

1.1. Conditions on loss functions–I. The loss function L(a, θ) is for any fixed
θ a non-increasing (non-decreasing) function of a in the domain a ≤ θ (a ≥ θ). In
some details we will need another assumption:

1.2. Conditions on loss functions–II. The loss function L(a, θ) is for any fixed
a a non-increasing (non-decreasing) function of θ in the domain θ ≤ a (θ ≥ a).
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Note that for a symmetric loss (L(a, θ) = L(θ, a)) conditions I and II are
equivalent. In what follows we will sometimes need stronger versions of the above
conditions in the sense that non-increasing should be replaced by increasing and
non-decreasing should be increasing. We will refer to those conditions as strict
conditions.

2. SOME PROPERTIES OF PITMAN’S CRITERION

Besides the comparison which one of two estimators is P-better, the Pitman
criterion provides another, more useful information which is contained in the value
of PN or GPN, which are defined by (4) and (5). Indeed, if PN is close to 0.5, then
for most practical purposes it is really irrelevant which estimator will be used, from
the viewpoint of this criterion. In rare cases, the evaluation of PN is analytically
tractable, but mostly one has to use numerical methods or simulation. There are
some quantitative examples in the literature, cf. [4], [6], [7], [11]. In the present
paper we contribute some more numerical examples.

Pitman’s criterion naturally leads to medians in much the same way as the
mean square error leads to means. We will illustrate this feature by a simple
example. Suppose we want to determine a single number b which gives the best
description of a given random variable X. In the sense of MSE criterion, we need
to find b so that

E(X − b)2 ≤ E(X − a)2 for each a ∈ R,

and then we get b = EX, if the expectation exists. In the sense of Pitman’s
criterion, it is not difficult to show that

P (|X −m| ≤ |X − a|) ≥ 1
2

for each a ∈ R,

where m = Med(X) is a median of X. In fact, a more general result holds, which
we give in the following Lemma.

2.1. Lemma. Let X be a random variable with a median m and let L be any loss
which satisfies Conditions 1.2. Then

Med
(
L(X, m)− L(X, c)

)
≤ 0 for any c.

If strict conditions in 1.2. are satisfied, then

Med(L(X, m) < L(X, c)) < 0 for any c 6= m.

Proof. Suppose that m < c and let X ≤ m. Then by 1.2, L(X, m) ≤ L(X, c).
Therefore, in this case, the event {X ≤ m} implies the event {L(X, m) ≤ L(X, c),
and so

1
2
≤ P (X ≤ m) ≤ P

(
L(X, m) ≤ L(X, c)

)
.
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If m > c then we can see that the event {X ≥ m} implies the event {L(X, m) ≤
L(X, c)}, hence

1
2
≤ P (X ≥ m) ≤ P

(
L(X, m) ≤ L(X, c)

)
.

We remark that Lemma 2.1. was essentially known to Pitman [17] for
L(a, θ) = |a − θ| (and probably was known much before in this form). Nayak
[12] proved it for L(a, θ) = h(a − θ), where h is decreasing for negative values of
arguments and increasing for positive values.

Therefore (with some conditions to avoid trivial cases), a median is P-closer
to X than any other real number.

In passing, let us note that the median is obtained also as a result of L1

criterion-minimizing the mean absolute deviation. However, the Pitman’s criterion
and L1 are generally different.

3. FRAMEWORK OF DECISION THEORY

A drawback of Pitman’s criterion is that it does not fit into the usual frame-
work of decision theory, that is, it does not follow from the evaluation of risk. We
will show that, under some additional assumptions, some kind of decision theoreti-
cal approach is possible. This is a complement to the work of Peddada [15, 16],
Lee [10], and [Rukhin] [19].

Suppose that we have a class T of estimators of θ and let T0 be a P -best
estmator in T , in the sense that (6) holds for any T ∈ T . Then let T0 be an
estimator in T with the least median of loss, that is

(7) Med
(
L(T0, θ)

)
−Med

(
L(T, θ)

)
≤ 0,

for each T ∈ T . If we were dealing with expectations, (6) and (7) would yield the
same estimator, i.e.,

(8) E
(
L(T0, θ)

)
− E

(
L(T, θ)

)
≤ 0.

However, for medians we have to impose some additional conditions to ensure
any one way implication between these three. For median unbiased estimators,
relation (7) is an analogue of variance comparision in the usual MSE setup, since
MedL(T, θ) is a measure of a dispersion of T arround θ. Let us firstly consider an
example.

3.1. Example. Suppose that we have an iid sample of size n from a normal
N (0, σ2) distribution. Let T = {Tα} be the class of estimators for σ2 which are of
the form

Tα =
1
α

n∑
i=1

X 2
i ,

and suppose, for simplicity, that we want to estimate σ2 with the absolute difference
loss, L(T, θ) = |T − θ|. Then it is well known (in fact, it was stated in Pitman’s
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paper [17], but later several times rediscovered) that the P-best estimator here is
Tα0 with α0 = Med (χ 2

n ). Now if we propose to find an estimator with the smallest
median of deviations, that is

Med

∣∣∣∣∣ 1
α

n∑
i=1

X 2
i − σ2

∣∣∣∣∣ → min,

then it obviously leads to the problem of finding α = α′
0 > 0 that minimizes

(9) ϕ(α) = Med
∣∣∣∣Yα − 1

∣∣∣∣ ,

where Y ∼ χ 2
n .These two problems have different solutions, in general. For exam-

ple, if n = 5, then α0 = Med(χ 2
5 ) = 4.351 and α′

0 = 5.321 (the latter number is
obtained numerically). It is interesting to note the discrepancy between the min-
imum value in (9) which is 0.416 (at α = α′

0) and the value at α = α0, which is
0.594. The best estimator in the sense of (8) is again the one with α = α0.

Still, there is a connection between (6), (7) and (8), under some additional
conditions. One approach would be suitable if the distribution of L(T0, θ)−L(T, θ)
is unimodal. Then we may recall the well known mean-median-mode inequality
which states that, under certain conditions, the mean, median and mode occur in
this or in reversed order, see [2] or [3] for more details. Let µ, m, M be the mean,
median and mode for the distribution of L(T0, θ)− L(T, θ). If

(10) µ ≤ m ≤ M

then (6) implies (8) and is implied by M ≤ 0. If inequalities in (10) are reversed,
then (8) implies (6). Therefore, we have the following result.

3.2. Theorem. If the distribution of L(T0, θ)−L(T, θ) is unimodal with a negative
mode, if

E
(
L(T0, θ)

)
≤ E

(
L(T, θ)

)
and if the mean-median-mode inequality holds, then (6) holds.

The reason why we state this theorem is that the mean-median-mode inequal-
ity is observed in all cases of some practical interest. For the sake of completeness,
we give a sufficient condition for this result to hold (cf. [2] or [3]).

Theorem. [3] Let X be a unimodal random variable. If (X−m)+ is stochastically
larger than (X −m)−, then X has a mode M satisfying M ≤ m ≤ µ..

A second approach, to find a connection between (6) and (7), is based on the
following simple lemma.

3.3. Lemma. Let X and Y be jointly distributed random variables such that

(11) mX ≤ mY , where mX = Med(X), mY = Med(Y ),
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and

(12) Med (|X −mX |+ |Y −mY |) ≤ mY −mX .

Then Med(Y −X) ≤ 0.

Proof. Let Q be the square with the center in (mX ,mY ) and one side on the line
y = x. Then (12) simply states that more than 1/2 of the mass of joint distribution
for (X, Y ) is concentrated in Q. By the assumption (11), Q is in the upper half
plane and the assertion follows.

Note that the expression at the left hand side of (12) is a quantitative measure
of dispersion: in one dimension it is known as median absolute deviation.

Based on the Lemma 3.3, we can conclude that for (6) to hold, it suffices
that (7) holds and that the joint distribution of L(T0, θ) and L(T, θ) is sufficiently
concentrated (in the sense of (12)) in the neighborhood of the intersection of their re-
spective “median lines”. This requires either strong concentration of both marginal
distributions around their medians, or a relatively strong dependence between T0

and T .

3.4. Example. If the distribution of X is symmetric, then both the sample mean
and sample median (in the case of an odd sample size) are unbiased equivariant
estimators (under approprite invariant loss) of θ = EX. Since Pitman’s criterion
usually favors median unbiased estimators, it is interesting to compare two median
unbiased estimators. We will consider a normal and an exponential case.

Normal distribution. Let X ∼ N (µ, 1)
and let X1, . . . , X2n+1 be a sample drawn from
the distribution of X. Let µ̂ and m̂ = X(n+1)

be the sample mean and median, respectively.
In the existing literature, comparision of these
two estimators under PC has not been made.
Fountain [4] compared X1 vs. m̂, although his
method is applicable for comparison of µ̂ vs. m̂.
A Monte Carlo simulation reveals that under
the squared error loss, µ̂ is P -better than m̂. In
the Table we present results based on a Monte
Carlo simulation of size 10000. PN(m̂, µ̂, µ) is
the probability that sample median is closer to
µ = 0 than the sample mean.

Sample size PN(m̂, µ̂, µ)
5 0.39
15 0.40
25 0.39
35 0.39
45 0.39
55 0.39
65 0.39
75 0.38
85 0.39
95 0.39
105 0.38

Laplace distribution. In the case of Laplace distribution, with density

fθ(x) =
1
2

e−|x−θ|, −∞ < x < +∞,

Fountain [4] obtained exact results which show that m̂ is P -better than µ̂.

T-distribution. As shown in the table below, the results for the T -distribution
depend on sample size and on degrees of freedom. The sample median generally



Some remarks regarding Pitman closeness 7

dominates the sample mean for large sample sizes and small number of degrees of
freedom.

n/df 1 2 3 4 5
5 0.72 0.57 0.53 0.49 0.47
15 0.83 0.64 0.55 0.51 0.48
25 0.86 0.66 0.56 0.51 0.48
35 0.88 0.67 0.57 0.51 0.49
45 0.90 0.68 0.57 0.52 0.49
55 0.90 0.69 0.57 0.51 0.49
65 0.91 0.69 0.58 0.52 0.48
75 0.91 0.70 0.57 0.52 0.50
85 0.92 0.70 0.59 0.52 0.49
95 0.92 0.70 0.58 0.52 0.48
105 0.93 0.70 0.59 0.52 0.49

PN(m̂, µ̂, µ) (probability that the sample median is closer to µ = 0 than the sample
mean) for different sample sizes n and degrees of freedom df of T distribution.

Discussion. Normal and Laplace case can be explained theoretically: nor-
mal case by [12, Theorem 3.3] (or, since there is an ancillary statistics involved,
by Kubokawa’s general result [9]). However, in the light of results obtained in
this section, we may offer a heuristic explanation, which may deserve a further
research. Note that in both cases prefered estimators are MLE ones. Since MLE
estimators have the minimal variance, a similar property should hold for medians
of loss, and via Lemma 3.3, for Pitman’s comparision. The behavior of estimators
in the case of Student’s distribution is also interesting, because here neither the
sample median nor the sample mean are MLE.

4. ASSOCIATION AND PITMAN CLOSENESS

4.1. Definition. We say that random variables X and Y are positively associated
if

(13) P (X ≤ y, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y), for all x, y ∈ R,

and they are negatively associated if

(14) P (X ≤ y, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y), for all x, y ∈ R.

It is easy to check that these conditions are respectively equivalent to

(15) P (X > y, Y > y) ≥ P (X > x)P (Y > y), for all x, y ∈ R,

(16) P (X > y, Y > y) ≤ P (X > x)P (Y > y), for all x, y ∈ R.
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Due to existence of left limits of probability, we may interchange ≤ and < and also
≥ and > in all events which probability is evaluated. Further, it is not difficult to
see that X and Y are negatively associated if and only if X and −Y are positively
associated.

Association is obviously a more complex condition than correlation, but has a
similar interpretation (see [1, 3] for more details). In particular, any two indepen-
dent random variables are both positively and negatively associated. It was proved
by Sibiuya [20] that minimum and maximum in a sample are positively associ-
ated. More than that, it can be proved that any two order statistics are positively
associated, but the proof would not be along the lines of the present paper.

For a convenience, we give here a definition of a median unbiased estimator.

4.2. Definition. An estimator T of a parameter θ is called median unbiased if
Medθ(T ) = θ, or, equivalently, if

Pθ(T ≤ θ) ≥ 1
2

and Pθ(T ≥ θ) ≥ 1
2

.

4.3. Theorem. Let T be a median unbiased estimator of a parameter θ ∈ Θ
and let either (i) U = T + Z, or (ii) U = T (1 + Z), where T and Z are positively
associated. Then

(17) Medθ

(
L(T, θ)− L(U, θ)

)
≤ 0

for any θ ∈ θ and any loss which satisfies Condition 1.1.

Proof. We give the proof for case (i) only, since (ii) is similar. Let events A and
B be defined as

A = {T ≤ θ, Z < 0}, B = {T ≥ θ, Z ≥ 0}.

It is easy to see that, due to the assumptions we adopted for L, both events imply
that L(T, θ) ≤ L(U, θ) and so,

P
(
L(T, θ) ≤ L(U, θ)

)
≥ P (A ∪B) = P (A) + P (B)
≥ P (T ≤ θ)P (Z < 0) + P (T ≥ θ)P (Z ≥ 0)

≥ 1
2

P (Z < 0) +
1
2

P (Z > 0) =
1
2

.

Remarks. For a case of T and Z being independent, a similar result was proved
by Ghosh and Sen [5], for the absolute value loss.

We can also estimate the difference between the probability in Theorem 4.3
and 1/2. Indeed, the event L(T, θ) ≤ L(U, θ) is also implied by the following two
events:

C = {T ≤ θ, 2T + Z ≥ 0} and D = {T ≥ θ, 2T + Z < 2θ},
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and so,

Pθ

(
L(T, θ) ≤ L(U, θ)

)
− 1

2
≥ P (C) + P (D).

4.4. Example. Let T = m̂ be the sample median in the case of an odd sample
size. Let Z = αX(i), where X(i) is any order statistics and α > 0. Then T and
Z are positively associated, T is median unbiased estimate of a median, hence we
conclude, using Theorem 4.3, that Med

(
L(m̂,m) − L(m̂ + αX(i),m)

)
≤ 0, if the

loss satisfies the stated conditions.

If we interchange events A,B and C,D (see notations in Theorem 4.3 and
remarks below it), then we can get another related result, as follows.

4.5. Theorem. In the setup of theorem 4.3, if −T and U + T are positively
associated, then (17) holds.

Proof. Here we consider events C and D and we note that

P
(
L(T, θ) ≤ L(U, θ)

)
≥ P (C ∪D) = P (C) + P (D)
= P (−T ≥ −θ, U + T ≥ θ) + P (−T ≤ θ, U + T < 2θ)

≥ 1
2

P (Z < 0) +
1
2

P (Z > 0) =
1
2

,

by the same argument as in Theorem 4.3.

5. ESTIMATORS BASED ON CONDITIONING

In this section we give the following Rao-Blackwell type result.

5.1. Theorem. Let S be any estimator of θ and let T be any other statistics. Let
S∗ be a conditional median of S given T , that is

P (S∗ ≥ S | T ) ≥ 1
2

, P (S∗ ≤ S | T ) ≥ 1
2

.

Then for any loss such that 1.1. is satisfied, we have that

Med
(
L(S∗, θ)− L(S, θ)

)
≤ 0.

Proof. It is easy to see that events

E = {θ ≤ S∗(T ) ≤ S} and F = {S ≤ S∗(T ) < θ}

imply the event L(S∗, θ) ≤ L(S, θ). Hence, for any given T = t we have that

Pθ

(
L(S∗, θ) ≤ L(S, θ) | T = t

)
≥ Pθ(E ∪ F | T = t).

With T = t, S∗ is a number which is either ≥ θ or < θ. In the former case, the event
E ∪ F reduces to the event {S∗ ≤ S}, in the latter case, it reduces to {S∗ ≥ S}.
The conditional probability in both cases is ≥ 1/2, so we have that

Pθ(E ∪ F | T = t) ≥ 1
2
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and by taking the expectation here we get the desired result.

Remark. Theorem 5.1 is a generalization (with a different proof) of a result of
Nayak [13], who proved it under the assumption that T is a sufficient statistics and
that the conditional distribution of S given T is continuous. Of course, theorem
5.1 is useful only if the conditional median S∗ does not depend on actual value of
θ, but T need not be a sufficient statistics for that purpose. Let us consider an
example.

5.2. Example. Let fθ be a family of densities with the same median m and a
mean θ. Suppose that we need to estimate θ based on a sample X1, X2 from fθ. A
usual estimator would be S = (X1 + X2)/2. Conditional median of S given X1 is
(X1 + m)/2; it does not depend on θ, although X1 is not a sufficient statistics. So,
on the basis of Theorem 5.1, we conclude that (X1 + m)/2 is an improvement over
(X1 + X2)/2 in Pitman’s sense.
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