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A NOTE ON COMPACT OPERATORS

Adil G. Naoum, Asma I. Gittan

Let H be a separable complex Hilbert space and let B(H) be the algebra
of bounded linear operators on H. Recall that an operator T ∈ B(H) is said to be
compact if for every bounded sequence {xn} of vectors in H, the sequence {Txn}
contains a converging subsequence. An operator T is said to be of finite rank if
the range of T, R(T ) is finite dimensional. It is easily seen that every finite rank
operator is compact, however, the converse is false. The operator T is said to
be of almost finite rank of T is the limit, in the norm topology of B(H), of a
sequence of finite rank operators. Finally, the operator T is said to be completely
continuous (or C.C.) if for every weakly convergent sequence {xn}, the sequence
{Txn} converges. A sequence {xn} in H is said to converge weakly if the sequence
{〈xn, y〉} of numbers converges for all y. For these concepts see [1], [2], [3], [6].

The following result is well known (see [4], [7]):

Theorem. Let T ∈ B(H). The following statements are equivalent:
1. T is compact. 2. T is of almost finite rank. 3. T is completely continuous.

In this note we introduce the concepts of a quasi-compact operator and semi-
compact operator and we show the equivalence of these concepts with compactness.

1. QUASI-COMPACT OPERATORS AND SEMI-COMPACT
OPERATORS

We start this by definitions:

Definition 1.1. An operator T ∈ B(H) is said to be quasi-compact if for eve-
ry sequence {xn} in H that converges weakly to the zero vektor 0, the sequence
{〈Txn, xn〉} converges to 0.

Note that this definition is equivalent to saying that when xn → x weakly,
then 〈Txn, xn〉 → 〈Tx, x〉.
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Definition 1.2. An operator T ∈ B(H) is said to be semi-compact if for every
orthonormal sequence {en} in H, the sequence {〈Ten, en〉} converges to 0.

Since every orthonormal sequence converges weakly to 0, then it is clear that
every quasi-compact operator is semi-compact. Our main result in this note is the
following.

Theorem 1.3. Let T ∈ B(H). The following statements are equivalent :

1. T is compact. 2. T is quasi-compact. 3. T is semi-compact.

For the proof of the theorem we need the following lemmas:

Lemma 1.4. If A is self adjoint operator (A = A∗) in B(H) which is quasi-
compact, then A is C.C., and hence is compact.

Proof. Let each of {xn} and {yn} be a weakly convergent sequence in H that
converges to 0. Thus 〈Axn, xn〉 → 0 and 〈Ayn, yn〉 → 0. It is clear that the
sequences {xn + yn} and {xn − yn} are weakly converging to 0. Thus

〈A(xn + yn), xn + yn〉 → 0 and 〈A(xn − yn), xn − yn〉 → 0.

Thus 〈Axn, xn〉+ 〈Axn, yn〉+ 〈Ayn, xn〉+ 〈Ayn, yn〉 → 0. But 〈Axn, xn〉 → 0 and
〈Ayn, yn〉 → 0, hence 〈Axn, yn〉+ 〈Ayn, xn〉 → 0. Because A = A∗, then 〈Ayn, xn〉
= 〈yn, Axn〉 = 〈Axn, yn〉. Thus 〈Axn, yn〉+ 〈Axn, yn〉 = 2 Re 〈Axn, yn〉 → 0.

Similarly, 〈Axn, yn〉 − 〈Axn, yn〉 = 2 Im 〈Axn, yn〉 → 0.

Hence the sequence {〈Axn, yn〉} → 0 for any two sequences {xn}, {yn} that
converge to 0 weakly. In particular, if {yn} = {Axn}, then {〈Axn, Axn〉} =
{‖Axn‖2} converges to 0. And the operator A is a C.C. operator.

Lemma 1.5. If A is a self adjoint operator which is semi-compact, then A is of
almost finite rank.

We postpone the proof of the lemma to Section 3.
Theorem 1.3 now follows from the following.

Theorem 1.6. Let T ∈ B(H), then the following statements are equivalent:
1. T is a compact operator. 2. T is a C.C. operator.
3. T is a quasi-compact operator. 4. T is a semi-compact operator.
5. T is of almost finite rank.

Proof. The equivalence of 1 and 2 is well known.
(2) ⇒ (3) : Let {xn} be a weakly convergent sequence to 0. Since T is

C.C., Txn → 0. By the continuity of the inner product, 〈Txn, xn〉 → 0, thus T is
quasi-compact.

(3) ⇒ (2) : Let T = A + iB, where A =
1
2

(T + T ∗) and B =
1
2i

(T −T ∗), it

is clear that A and B are self adjoint. Let {xn} be a weakly convergent sequence
to 0. Since T is quasi-compact, then 〈Txn, xn〉 → 0, which implies 〈T ∗xn, xn〉 → 0.
Hence

〈Axn, xn〉 =
1
2
〈Txn, xn〉+

1
2
〈T ∗xn, xn〉 → 0.
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Thus A is a quasi-compact operator. But A is self adjoint, hence by Lemma 1.4, A
is C.C. By the same argument B is C.C., and hence T is C.C.

(3) ⇒ (4) : Follows from the fact that every orthonormal sequence converges
weakly to 0.

(4) ⇒ (5) : Let T = A+iB, where A =
1
2

(T +T ∗) and B =
1
2i

(T−T ∗). Let

{en} be an orthonormal sequence in H. Since T is semi-compact, 〈Ten, en〉 → 0,
which implies 〈T ∗en, en〉 → 0. Consequently,

〈Aen, en〉 =
1
2
〈Ten, en〉+

1
2
〈T ∗en, en〉 → 0.

Similarly 〈Ben, en〉 → 0. Thus by Lemma 1.5, each of A and B is of almost
finite rank. Hence T = A + iB is almost finite rank.

(5) ⇒ (1) : Follows from the fact that each finite rank operator is compact
and the set of compact operators is closed, [6].

Now, for the proof of the Lemma 1.5, we need the functional calculus.

2. FUNCTIONAL CALCULUS

For a general reference on functional calculus see [3], [4], [6], [7].
Let A be a self-adjoint operator in B(H). It is easily seen that 〈Ax, x〉 is

real for all x ∈ H. It is known that ‖A‖ = sup
‖x‖=1

{|〈Ax, x〉|}, [6, Prop. 68.5].

Let m = m(A) = inf
‖x‖=1

{〈Ax, x〉}, M = M(A) = sup
‖x‖=1

{〈Ax, x〉}. These numbers

are called the lower and the upper bounds of A, respectively. It is known that
‖A‖ = Max {|m|, |M |}. Let P be the linear space of all polynomial functions with
real coefficients defined on the interval [n, M ]. Let p(t) = a0 + a1t + · · · + Antn

∈ P, p(A) = a0I + a1A + · · ·+ anAn.

Recall that a self adjoint operator A is called positive, A ≥ 0, if 〈Ax, x〉 ≥ 0
for all x ∈ H. Consequently, if A, B are self adjoint operators on H, we say that
A ≤ B if B −A is positive, i.e. 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H.

Next we turn to continuous functions on [m,M ]. Since every continuous
function can be approximated uniformly by the sequence of polynomial functions
(Weierstrass approximation theorem), the map p → p(A) can be extended to
the Banach space of all continuous functions on [m,M ].

Let A ∈ B(H) be a self adjoint operator, and let f be a continuous function
on [m,M ]. Then there exists a unique operator f(A) which is bounded and self
adjoint.

Next we extend the notion f(A) to functions which are not necessarily con-
tinuous. But first we need a definition.

Definition 2.1. [6] A sequence {Tn} of self adjoint operators is said to be mono-
tonic increasing (decreasing) if T1 ≤ T2 ≤ · · · ≤ L (T1 ≥ T2 ≥ T3 ≥ · · · ). It is
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said to be bounded from above (below) if there exists a self adjoint operator B with
Tn ≤ B (Tn ≥ B) for all n. A sequence is said to be bounded if it is bounded from
below and above.

The proof of the following proposition is not difficult (see [6]).

Proposition 2.2. Every monotonic and bounded sequence of self adjoint operators
on H converges strongly (i.e. pointwise) to a self adjoint operator, i.e. exists a self
adjoint operator T on H such that ‖Tnx− Tx‖ → 0 for each x ∈ H.

Let K1 be the class of functions f : [m,M ] → R for which the following
holds: There exists a sequence of continuous functions {fn} on [m,M ] with fn(t) ≥
fn+1(t) ≥ 0 and fn(t) → f(t) for every t ∈ [m,M ].

Remark 2.3. By Weierstrass approximation theorem, we can replace the func-
tions {fn} by polynomials {pn}.

Proposition 2.4. Let A ∈ B(H) be a self adjoint operator. Let f ∈ K1 and hn(t)
be a monotone decreasing sequence of polynomials that converges pointwise to f.
Then the sequence of operators {hn(A)} converges strongly to an operator denoted
by f(A), moreover, f(A) is self adjoint and does not depend on the choice of {hn}.
Proof. See [6] and [7].

Proposition 2.5. Let A ∈ B(H) be a self adjoint operator. Then the mapping
f → f(A), where f ∈ K1 has the following properties:

(1) If f, g ∈ K1 and f(t) ≤ g(t) for all t ∈ [m,M ], then f(A) ≤ g(A).
(2) (αf)(A) = α

(
f(A)

)
for α ≥ 0. (3) (f + g)(A) = f(A) + g(A).

(4) fg(A) = f(A)g(A).

Proof. Proof is simple.

3. PROOF OF LEMMA 1.5

In this section we apply the tools constructed in Section 2 to prove Lemma
1.5. We start by the following:

Proposition 3.1. Let µ ∈ R, define the characteristic function eµ as follows:

eµ(λ) =

{
0 (for λ ≤ µ)
1 (for λ > µ)

Then the function eµ belongs to the class K1 and eµ(A) is a projection operator.

Proof. Define a sequence {fn} of continuous functions on R as follows: fn(λ) = 1

for λ ≤ µ, fn(λ) = 0 for λ ≥ µ +
1
n

and on
(
µ, µ +

1
n

)
the function fn is linear.

Now, if A ∈ B(H) is self adjoint with m, M defined as above, then by
Proposition 2.4, the operator eµ(A) is defined in B(H) and is self adjoint. Moreover,
since e 2

µ (λ) = eµ(λ), then by Proposition 2.5 e 2
µ (A) = eµ(A). Thus the operator
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eµ(A) is a projection operator. Notice that eµ(A) = 0, the zero operator if µ < m
and eµ(A) = I, the identity operator if µ > M.

Lemma 3.2. Let A be a self adjoint operator and α is non negative real number.
Let

pα(λ) =

{
0 (for |λ| < α)
1 (for |λ| ≥ α)

.

Then pα(A) is a self adjoint operator.

Proof. Define the characteristic functions qα(λ) and rα(λ) as follows:

qα(λ) =

{
0 (for λ ≤ −α)
1 (for λ > −α)

, rα(λ) =

{
0 (for λ ≥ α)
1 (for λ < α)

.

It is clear that pα(λ) = qα(λ) + rα(λ). By Proposition 3.1, each of the operators
rα(A) and qα(A) is defined and self adjoint. By Proposition 2.5, the operator
pα(A) = qα(A) + rα(A) is self adjoint.

Lemma 3.3. If A is a self adjoint operator which is semi compact and pα(A) is
the function defined in Lemma 3.2, then pα(A) is an operator of finite rank.

Proof. It is enough to show that each of the operators rα(A) and qα(A) is of
finite rank. Assume that rα(A) is not of finite rank, i.e. its range rα(A)H is
infinite dimensional. Let {en} be an infinite orthonormal sequence in rα(A)H.
Since rα(A) is a projection by Proposition 3.1, then rα(A)en = en for each n. Thus
〈Aen, en〉 = 〈Arα(A)en, rα(A)en〉.

Now, define the function

tα(λ) =

{
λ (for λ ≥ α)
α (for λ < α)

.

Notice that λrα(λ) = tα(λ)rα(λ). Using Proposition 2.5, we get Arα(A) = tα(A)rα(A).
Note also, because tα(λ) is non negative for all λ ∈ R, then tα(A) is a positive opera-
tor. Moreover, since tα(A)λ ≥ α for all real λ, then by Proposition 2.5, tα(A) ≥ αI.
Consequently 〈tα(A)u, u〉 ≥ α〈u, u〉 for all u ∈ H. In particular, if u = rα(A)en, we
get

〈Aen, en〉 = 〈tα(A)rα(A)en, rα(A)〉 ≥ α〈rα(A)en, rα(A)en〉 = α〈en, en〉 = α.

But this relation is true for each α > 0, thus 〈Aen, en〉 → 0, and hence A is not
semi compact which is a contradiction. Thus rα(A) is an operator of finite rank.
Similarly qα(A) has finite rank.

We are now in a position to prove Lemma 1.5.

Proof of Lemma 1.5. Let pα(A) be the function defined as in Lemma 3.2.
Consider the function λ

(
1−pα(λ)

)
= λ−λpα(λ). Since

∣∣λ−λpα(λ)
∣∣ ≤ α for all real
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λ, then by Proposition 2.5, ‖A−Apα(A)‖ ≤ α. Since the operator pα(A) has finite
rank, so is Apα(A). Hence for each n ∈ N, take α = 1/n. Then ‖A− Ap1/n(A)‖ ≤
1/n. Thus Ap1/n(A) → A, and hence A is almost finite rank.
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