
Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. 15 (2004), 7–12.

Available electronically at http: //matematika.etf.bg.ac.yu

AN INTEGRAL INEQUALITY
FOR NON-NEGATIVE POLYNOMIALS

Luciana Lupaş

If p is a polynomial of the exact degree n, p ≥ 0 on [a, b], the aim of this
paper is to establish an inequality of the form

1

b− a

b∫
a

p(x) dx ≥ αn

(
p(a) + p(b)

)
+ βn |p(a)− p(b)|.

There are given all extremal polynomials for which the equality case is at-
tained.

1. Supposing that n is a fixed natural number, let us define

(1) m =
[n
2

]
, s = n− 2m, d =

[
n+ 1

2

]
,

where the symbol [·] denotes the integral part.
By Π we denote the algebra of univariate polynomials with real coefficients

and by Πn the real linear space of all polynomials from Π of the degree at most n.
The set Pn

+[a, b] consists of the polynomials p, p ∈ Πn, with the properties

degree [p] = n, p(x) ≥ 0 for all x ∈ [a, b].

Let

R(α,β)
n (x) = 2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
=
P

(α,β)
n (x)(n+ α
n

)
be the Jacobi polynomial of the degree n normalized by R(α,β)

n (1) = 1.
Further, for a fixed n, let us select the division

−1 < z1 < z2 < · · · < zm < 1,
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(2) Rm
(1,s)(zj) = 0, j = 1, 2, . . . ,m,

m and s having the same meaning as in (1). At the same time we shall denote
yk = −zm+1−k, k = 1, 2, . . . ,m. It is known that

(3) R(s,1)
m (yk) = 0, k = 1, 2, . . . ,m.

Suppose that m, s, d , zk are as in (1)–(2) and let us denote

C0 =
8s

(n+ 2)2 − s
, Cm+1 =

8
(n+ 2)2 − s

, Gk =
1 + (1− s)zk(
Rd

(0,0)(zk)
)2 , k = 1, . . . ,m,

ζ =
2s+2

(n+ 2)2 − s
, ηn =

2n+2m! (m+ 1)!d! (d+ 1)!
(n+ 1)! (n+ 2)!

, µn = (−1)n+1ηn.

Further we need the following result.

Lemma 1. If f ∈ Cn+1[−1, 1], then there exist in (−1, 1) at least two points θ1, θ2
such that

(4)

1∫
−1

f(x) dx = C0f(−1) + ζ
m∑

k=1

Gk f(zk) + Cm+1f(1)− ηn
f (n+1)(θ1)
(n+ 1)!

,

(5)

1∫
−1

f(x) dx = C0f(1) + ζ
m∑

k=1

Gm+1−k f(yk) + Cm+1f(−1)− µn
f (n+1)(θ2)
(n+ 1)!

.

Proof. In order to justify (4)–(5) it is sufficient to use the Bouzitat quadrature
formulas for the Legendre weight, i.e. the Radau formulas. Let n = 2m + s.
When n is even (s = 0) the quadrature from (5) may be derived, by a suitable
linear transformation, from the Bouzitat formula of the first kind (see [2]). If
n = 2m+ 1, then (4) is the same with Bouzitat elementary quadrature formulae
of the second kind (see (4.7.1) and (4.8.1) from [2]) .

2. Let us consider the polynomials H∗ and G∗ where

H∗(x) :=
(
A(x− a)s + Bs(b− x)

)(
R(1,s)

m

(2x− a− b

b− a

))2

,

G∗(x) := H∗(a+ b− x),

where A > 0 when s = 0 and A ≥ 0, B ≥ 0, A 6= B for s = 1.
The main result is the following proposition:

Theorem 1. If p ∈ Pn
+[a, b], m = [n/2], s = n− 2m, then

1
b− a

b∫
a

p(x) dx ≥ 2(1 + s)
(n+ 2)2 − s

(
p(a) + p(b)

)
+

2(1− s)
(n+ 2)2 − s

∣∣p(a)− p(b)
∣∣.
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The equality case is attained only for the polynomials H∗(x) or G∗(x).

Proof. First, let us observe that the extremal polynomial H∗ may be written as

H∗(x) =
A(x− a)s + Bs (b− x)

(x− a)2s

(
Pm

(
y(x)

)
− Pm+1+s

(
y(x)

)
b− x

)2

.

where y(x) =
2x− a− b

b− a
and Pm(x) =

1
2mm!

(
(x2−1)m

)(m) being the Legendre

polynomial.
We shall prove the above result in the case [a, b] = [−1, 1]. Supposing that

En(p; s) :=
4(1 + s)

(n+ 2)2 − s

(
p(−1) + p(1)

)
+

4(1− s)
(n+ 2)2 − s

∣∣p(−1)− p(1)
∣∣,

we must prove that the inequality

(6)
1∫
−1

p(x) dx ≥ En(p; s)

is verified for any polynomial p, of the degree n, which is non-negative on the
interval [−1, 1].

Using the notation (1) we observe that if p ∈ Pn
+[−1, 1], then there exist

two polynomials Am, Bd−1

Am ∈ Πm, Am(1) = p(1), Bd−1 ∈ Πd−1,

such that

(7) p(x) =
(

1 + x

2

)s

Am
2(x) + (1− x)(1 + x)1−sBd−1

2(x).

This representation is in fact a form of a theorem of Lukács (see [4]–[5]).
According to (4)

1∫
−1

p(x) dx =
8

(n+ 2)2 − s

(
sp(−1) + p(1)

)
+ ζ

m∑
k=1

Gk p(zk)

≥ 8
(n+ 2)2 − s

(
sp(−1) + p(1)

)
and in the same manner from (5)

1∫
−1

p(x) dx =
8

(n+ 2)2 − s

(
p(−1) + sp(1)

)
+ ζ

m∑
k=1

Gm+1−k p(yk)

≥ 8
(n+ 2)2 − s

(
p(−1) + sp(1)

)
.
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For n even (s = 0), from the above inequalities we find

1∫
−1

p(x) dx ≥ 8
(n+ 2)2

max {p(−1), p(1)}En(p; 0).

When s = 1, that is, n is odd one observes that

1∫
−1

p(x) dx ≥ 8
(n+ 2)2 − 1

(
p(−1) + p(1)

)
En(p; 1).

Let us show that (6) cannot be improved. We shall show that there exists a
polynomial h∗ ∈ Pn

+[−1, 1] such that

1∫
−1

h∗(x) dx = En(h∗; s).

Consider the polynomial

(8) h∗(x) =
((1 + x

2

)s

+Bs
(1− x

2

))(
R(1,s)

m (x)
)2

,

where B ≥ 0, B 6= 1. It is clear that h∗ ∈ Pn
+, and moreover

h∗(−1) =
4(1− s)
(n+ 1)2

+ sB, h∗(1) = 1, h∗(zk) = 0, k = 1, 2, . . . ,m.

At the same time, according to (4)–(5)

1∫
−1

h∗1(x) dx =
8

(
1 + sh∗(−1)

)
(n+ 2)2 − s

= En(h∗; s)

which means that the equality case in (6) holds.
Let us investigate the equality cases:
(i) s = 0 : then d = m and p(x) = A2

m(x) + (1− x2)B2
m−1(x).

In order to have equality in (7) we must have one of the following two situa-
tions:

a) Bm−1(zk) = 0, Am(zk) = 0, k = 1, 2, . . . ,m, and p(1) ≥ p(−1), or
b) Bm−1(yk) = 0, Am(yk) = 0, k = 1, 2, . . . ,m, and p(−1) ≥ p(1).
When a) holds, then Bm−1 = 0 and

p(x) = λ1

(
R(1,0)

m (x)
)2

, λ1 > 0,

that is p(x) = λ1h
∗(x).
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Suppose that b) is true. Then we observe that

p(x) = λ2

(
R(0,1)

m (x)
)2

= λ3

(
R(1,0)

m (−x)
)2

, λ2, λ3 > 0.

Thus, p(x) must be of the form p(x) = λ4h
∗(−x), λ4 > 0.

(ii) s = 1 : then d− 1 = m and

p(x) =
1 + x

2
A2

m(x) + (1− x)B2
m−1(x).

It may be seen that for equality case it is necessary and sufficient to have

p(zk) = 0, k = 1, 2, . . . ,m,

therefore Bd−1(x) = µ1R
(1,1)
m (x), Bm(x) = µ2R

(1,1)
m (x). In other words, the ex-

tremal polynomials p∗(x) have the representation

p∗(x) = (µx+ ν)
(
R(1,1)

m (x)
)2

= µ1h
∗(x) = µ2h

∗(−x)

with 0 < |µ| ≤ ν, µ1 > 0, µ2 > 0.
In conclusion, the equality in (6) holds only for polynomials from Pn

+[−1, 1]
which have the representation

p(x) = ψ1h
∗(x) or p(x) = ψ2h

∗(−x),

ψ1, ψ2 being positive constants and h∗(x) as in (8).

Remark. When n is even, i.e. s = 0 the above theorem was proved by F. Lukács
in [3]: see also the excellent monograph [4], pages 132–133 (Theorem 1.7.1 and
Theorem 1.7.2).

3. A more general problem may be formulated in the following manner. We
consider a non-negative weight w(x) which is defined on a bounded interval [a, b]
such that all moments

b∫
a

xiw(x) dx, i = 0, 1, . . . ,
b∫

a

w(x) dx = 1

are finite and supp (w) has a positive measure.
Suppose that z1, z2 are fixed points

−∞ < a ≤ z1 < z2 ≤ b <∞, (z1 − a)2 + (b− z2)2 > 0.

Problem. Find the “best constants”

K1,n = K1,n(z1, z2;w), K2,n = K2,n(z1, z2;w)
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in order that the inequality

b∫
a

p(x)w(x) dx ≥ K1,n

(
p(z1) + p(z2)

)
+K2,n

∣∣p(z1)− p(z2)
∣∣,

be valid for all p ∈ Pn
+[a, b].

It seems that in the case a = z1 < z2 < b, or when a < z1 < z2 = b the above
problem may be solved (n odd) by means of Fillippi quadrature formula (see [1],
p. 328).
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