MAXIMUM MODULE VALUES OF POLYNOMIALS ON $|z|=R(R>1)$

Adem Çelik

Let $f(z)$ and $g(z)$ be two polynomials of degrees $m \geq 1$ and $n \geq 1$ respectively on $|z| \leq R(R>1)$, and $\mathcal{M}_{f}=\max _{|z|=R}|f(z)|, \mathcal{M}_{g}=\max _{|z|=R}|g(z)|$ and $\mathcal{M}_{f g}=$ $\max _{|z|=R}|f(z) g(z)|$. If $z=0$ is not a root of given polynomials, it is shown that $\mathcal{M}_{f g} \geq \delta_{1} \mathcal{M}_{f} \mathcal{M}_{g}$, where $\delta_{1}=\frac{1}{2^{m}} \frac{1}{2^{n}}$. On the other hand, if $z=0$ is k-multiple root of $f(z)$ and a r-multiple root of $g(z)$, then it is proved that $\mathcal{M}_{f g} \geq \varepsilon \mathcal{M}_{f} \mathcal{M}_{g}$ with $\varepsilon=\frac{1}{2^{m-k}} \frac{1}{2^{n-r}}$. Moreover, some generalizations have been obtained for n similar polynomials.

1. INTRODUCTION

Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be complex-valued polynomial functions of degrees $m \geq 1$, $n \geq 1$, respectively, of a complex variable z, and $M_{f}=\max _{|z|=1}|f(z)|, M_{g}=\max _{|z|=1} \mid \overline{g(z) \mid}$ and $M_{f g}=\max _{|z|=1}|f(z) g(z)|$. It is shown (see [1]) that

$$
M_{f g} \geq \nu M_{f} M_{g} \text { with } \nu=\sin ^{m} \frac{\pi}{8 m} \sin ^{n} \frac{\pi}{8 n}
$$

Let $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{C} \rightarrow \mathbb{C}$ be complex-valued polynomial functions of degrees $d_{1}, d_{2}, \ldots, d_{n}$, respectively, of a complex variable z. In [2] the following inequality is obtained:

$$
M_{f_{1}} M_{f_{2}} \cdots M_{f_{n}} \geq M_{f_{1} f_{2} \cdots f_{n}} \geq k M_{f_{1}} M_{f_{2}} \cdots M_{f_{n}}
$$

with $k=\left(\sin \left(\frac{2}{n} \frac{\pi}{8 d_{1}}\right)\right)^{d_{1}} \cdot\left(\sin \left(\frac{2}{n} \frac{\pi}{8 d_{2}}\right)\right)^{d_{2}} \cdots\left(\sin \left(\frac{2}{n} \frac{\pi}{8 d_{n}}\right)\right)^{d_{n}}$.

[^0]It shown in $[\mathbf{3}]$ that $M_{f g}>\nu M_{f} M_{g}$ with $\nu=\frac{1}{2^{m}} \cdot \frac{1}{2^{n}}$.
If $f(z)$ and $g(z)$ accept $z=0$ as k-multiple and r-multiple roots, respectively, then in [4] the following inequality is obtained:

$$
M_{f g} \geq \delta M_{f} M_{g} \text { with } \delta=\frac{1}{2^{m-k}} \frac{1}{2^{n-r}}
$$

In [5], some generalizations of the results of [3] and [4], have been obtained for n similar polynomials.

2. MAXIMUM MODULE VALUES OF POLYNOMIALS NOT ADMITTING $z=0$ AS A ROOT ON $|z| \leq R(R>1)$

Firstly, we give two lemmas in order to facilitate the development of our work.
Lemma 2.1. For $|z|=R$ and $|\gamma| \neq 1 / R$, we have $\left|\frac{R^{2} \gamma-z}{1-\bar{\gamma} z}\right|=R$.
For the proof, it is enough to take the module of the both sides of $\frac{R^{2} \gamma-z}{1-\bar{\gamma} z}$ $=\frac{R^{2} \gamma-z}{\frac{z}{R^{2}}\left(\bar{z}-R^{2} \bar{\gamma}\right)}$.
Lemma 2.2. We have
(i) $\quad\left(z-R^{2} \gamma\right)=\left(z-\frac{1}{\bar{\gamma}}\right) \bar{\gamma} \frac{R^{2} \gamma-z}{1-\bar{\gamma} z}$ for $|\gamma| \neq \frac{1}{R}$.
(ii) All roots of the polynomials $f(z)=\left(z-R^{2} \alpha_{1}\right)\left(z-R^{2} \alpha_{2}\right) \cdots\left(z-R^{2} \alpha_{k}\right)$ of degree $m \geq 1$ satisfy $|z| \leq R$, where $\left|\alpha_{k}\right| \leq 1 / R, \quad k=1,2, \ldots, m$.
Proof. (i) is obvious and (ii) follows from the hypothesis and $\left|R^{2} \alpha_{k}\right|=R^{2}\left|\alpha_{k}\right|, k=$ $1,2, \ldots, m$.

Theorem 2.1. Let $\mathcal{M}_{f}=\max _{|z|=R}|f(z)|, \mathcal{M}_{g}=\max _{|z|=R}|g(z)|, \mathcal{M}_{f g}=\max _{|z|=R}|f(z) g(z)|$ be the maximum module values of the polynomials

$$
f(z)=\prod_{i=1}^{m}\left(z-R^{2} \alpha_{i}\right) \quad\left(\alpha_{i} \neq 0,\left|\alpha_{i}\right| \leq 1 / R\right)
$$

and

$$
g(z)=\prod_{j=1}^{n}\left(z-R^{2} \beta_{j}\right) \quad\left(\beta_{j} \neq 0,\left|\beta_{j}\right| \leq 1 / R\right)
$$

on $|z|=R$. Then

$$
\begin{equation*}
\mathcal{M}_{f g} \leq \delta_{1} \mathcal{M}_{f} \mathcal{M} g, \text { where } \delta_{1}=\frac{1}{2^{m}} \frac{1}{2^{m}} \tag{1}
\end{equation*}
$$

Proof. Consider the polynomial

$$
\begin{equation*}
h(z)=\prod_{k=1}^{\ell}\left(z-z_{k}\right) \quad\left(z_{k} \neq 0,\left|z_{k}\right| \leq R\right) \tag{2}
\end{equation*}
$$

Then we have $\mathcal{M}_{h}=R^{\ell} \max _{|z|=R}\left\{\left|\frac{h(z)}{z^{\ell}}\right|\right\}=R^{\ell} \max _{|z|=R}\left|\prod_{k=1}^{\ell}\left(1-\frac{z_{k}}{z}\right)\right|$. If we put $t=R / z$, than taking $s(t)=\prod_{k=1}^{\ell}\left(1-\frac{z_{k} t}{R}\right)$ it comes $\mathcal{M}_{h}=R^{\ell} \max _{|t| \leq 1}|s(t)|$, where $s(0)=1$, and we obtain from the Maximum module principle $\mathcal{M}_{h} \geq R^{\ell}$. Furthermore, by the definition of \mathcal{M}_{h} it is clear that $\mathcal{M}_{h} \leq 2^{\ell} R^{\ell}$.

Since $f(z)$ and $g(z)$ are polynomials of the type (2) similar argument yields $\mathcal{M}_{f} \leq 2^{m} R^{m}, \quad \mathcal{M}_{g} \leq 2^{n} R^{n}$.

If $z_{1}=z_{2}=\cdots=z_{\ell}=R e^{i \theta_{0}}\left(\theta_{0} \in \mathbb{R}\right)$, then $\mathcal{M}_{h}=2^{\ell} R^{\ell}$. On the other hand, let us consider the following sequences:

$$
\begin{aligned}
& R^{2} \alpha_{1}, \ldots, R^{2} \alpha_{p-1} / \alpha_{p}, \ldots, \alpha_{m} ; \quad\left|\alpha_{p}\right|>1 / R, \ldots,\left|\alpha_{m}\right|>1 / R, \\
& R^{2} \beta_{1}, \ldots, R^{2} \beta_{q-1} / \beta_{q}, \ldots, \beta_{n} ; \quad\left|\beta_{q}\right|>1 / R, \ldots,\left|\beta_{n}\right|>1 / R .
\end{aligned}
$$

Let

$$
F(z)=\prod_{i=1}^{p-1}\left(z-R^{2} \alpha_{i}\right) \prod_{j=p}^{m}\left(z-\frac{1}{\bar{\alpha}_{j}}\right), \quad G(z)=\prod_{i=1}^{q-1}\left(z-R^{2} \beta_{i}\right) \prod_{j=q}^{n}\left(z-\frac{1}{\bar{\beta}_{j}}\right)
$$

be polynomials on $|z| \leq R(R>1)$ with $m, n \geq 1$. Then, if we write $\mathcal{A}=\bar{\alpha}_{p} \cdots$ $\bar{\alpha}_{m}, \mathcal{B}=\bar{\beta}_{q} \cdots \bar{\beta}_{n}$, we have by means of Lemma 2.1 and Lemma 2.2

$$
f(z)=\mathcal{A} F(z) \prod_{\mu=p}^{m}\left(\frac{R^{2} \alpha_{\mu}-z}{1-\bar{\alpha}_{\mu} z}\right), \quad g(z)=\mathcal{B} G(z) \prod_{\eta=q}^{n}\left(\frac{R^{2} \beta_{\eta}-z}{1-\bar{\beta}_{\eta} z}\right) .
$$

It is easily deduced from the last equalities that we have

$$
\mathcal{M}_{f}=|\mathcal{A}| \mathcal{M}_{F} R^{m-p}, \quad \mathcal{M}_{g}=|\mathcal{B}| \mathcal{M}_{G} R^{n-q}, \quad \mathcal{M}_{f g}=|\mathcal{A}||\mathcal{B}| \mathcal{M}_{F G} R^{m-p+n-q}
$$

and hence

$$
\begin{equation*}
\frac{\mathcal{M}_{f g}}{\mathcal{M}_{f} \mathcal{M}_{g}}=\frac{\mathcal{M}_{F G}}{\mathcal{M}_{F} \mathcal{M}_{G}} \tag{3}
\end{equation*}
$$

Since $F(z)$ and $G(z)$ are polynomials of type (2), we obtain $\mathcal{M}_{F} \leq 2^{m} R^{m}$, $\mathcal{M}_{G} \leq 2^{n} R^{n}$ and $\mathcal{M}_{F G} \geq R^{m+n}$, and thus (1) is found from (3).

Corollary 2.1. Let $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)$ be polynomials of degrees m_{1}, m_{2}, \ldots, m_{n}, respectively, on $|z| \leq R(R>1)$. Suppose that $z=0$ is not a root of these polynomials. Then

$$
\mathcal{M}_{f_{1} f_{2} \cdots f_{n}} \geq \varepsilon \mathcal{M}_{f_{1}} \mathcal{M}_{f_{2}} \cdots \mathcal{M}_{f_{n}}, \quad \text { where } \varepsilon=\frac{1}{2^{m_{1}}} \frac{1}{2^{m_{2}}} \cdots \frac{1}{2^{m_{n}}}
$$

3. MAXIMUM MODULE VALUES OF POLYNOMIALS HAVING $z=0$ AS A ROOT ON $|z| \leq R(R>1)$

In this section, we will give some relations concerning maximum module values of polynomials which admit $z=0$ as a simple or multiple root on $|z|=R(R>1)$.

Theorem 3.1. Let

$$
f(z)=z \prod_{i=1}^{m-1}\left(z-R^{2} \alpha_{i}\right) \quad\left(\alpha_{i} \neq 0,\left|\alpha_{i}\right| \leq 1 / R\right)
$$

and

$$
g(z)=z \prod_{j=1}^{n}\left(z-R^{2} \beta_{j}\right) \quad\left(\beta_{j} \neq 0,\left|\beta_{j}\right| \leq 1 / R\right)
$$

be polynomials on $|z| \leq R(R>1)$ with $m-1, n-1 \geq 1$. Then

$$
\begin{equation*}
\mathcal{M}_{f g} \geq \delta_{2} \mathcal{M}_{f} \mathcal{M}_{g}, \quad \text { where } \delta_{2}=\frac{1}{2^{m-1}} \frac{1}{2^{n-1}} \tag{5}
\end{equation*}
$$

Proof. Consider

$$
\begin{equation*}
h(z)=z \prod_{k=1}^{\ell-1}\left(z-z_{k}\right) \quad\left(z_{k} \neq 0,\left|z_{k}\right| \leq R\right) \tag{6}
\end{equation*}
$$

If we apply the technique used in Theorem 2.1, then we have $\mathcal{M}_{h} \geq R^{\ell}$ and $\mathcal{M}_{h} \leq 2^{\ell-1} R^{\ell}$. Similarly, we can find $\mathcal{M}_{f} \leq 2^{m-1} R^{m}, \mathcal{M}_{g} \leq 2^{n-1} R^{n}$.

If $z_{1}=z_{2}=\cdots=z_{\ell-1}=R e^{i \theta_{0}}\left(\theta_{0} \in \mathbb{R}\right)$, then $\mathcal{M}_{h}=2^{\ell-1} R^{\ell}$. Now, let us write the following sequences:

$$
\begin{aligned}
& 0, R^{2} \alpha_{1}, \ldots, R^{2} \alpha_{p-1} / \alpha_{p}, \ldots, \alpha_{m-1} ; \quad\left|\alpha_{p}\right|>1 / R, \ldots,\left|\alpha_{m-1}\right|>1 / R \\
& 0, R^{2} \beta_{1}, \ldots, R^{2} \beta_{q-1} / \beta_{q}, \ldots, \beta_{n-1} ; \quad\left|\beta_{q}\right|>1 / R, \ldots,\left|\beta_{n-1}\right|>1 / R .
\end{aligned}
$$

As in Theorem 2.1, consider

$$
F_{1}(z)=z \prod_{i=1}^{p-1}\left(z-R^{2} \alpha_{i}\right) \prod_{j=p}^{m-1}\left(z-\frac{1}{\bar{\alpha}_{j}}\right), \quad G_{1}(z)=z \prod_{i=1}^{q-1}\left(z-R^{2} \beta_{i}\right) \prod_{j=q}^{n-1}\left(z-\frac{1}{\bar{\beta}_{j}}\right) .
$$

Putting $\mathcal{A}_{1}=\bar{\alpha}_{p} \cdots \bar{\alpha}_{m-1}, \quad \mathcal{B}_{1}=\bar{\beta}_{q} \cdots \bar{\beta}_{n-1}$, we can write

$$
f(z)=\mathcal{A}_{1} F_{1}(z) \prod_{\mu=p}^{m-1}\left(\frac{R^{2} \alpha_{\mu}-z}{1-\bar{\alpha}_{\mu} z}\right), \quad g(z)=\mathcal{B}_{1} G_{1}(z) \prod_{\eta=q}^{n-1}\left(\frac{R^{2} \beta_{\eta}-z}{1-\bar{\beta}_{\eta} z}\right),
$$

and hence

$$
\begin{aligned}
& \mathcal{M}_{f}=\left|\mathcal{A}_{1}\right| \mathcal{M}_{F_{1}} R^{m-1-p}, \quad \mathcal{M}_{g}=\left|\mathcal{B}_{1}\right| \mathcal{M}_{G_{1}} R^{n-1-q} \\
& \mathcal{M}_{f g}=\left|\mathcal{A}_{1}\right|\left|\mathcal{B}_{1}\right| \mathcal{M}_{F_{1} G_{1}} R^{m+n-p-q-2}
\end{aligned}
$$

It is clear that the following equation results from the last equalities:

$$
\begin{equation*}
\frac{\mathcal{M}_{f g}}{\mathcal{M}_{f} \mathcal{M}_{g}}=\frac{\mathcal{M}_{F_{1} G_{1}}}{\mathcal{M}_{F_{1}} \mathcal{M}_{G_{1}}} \tag{7}
\end{equation*}
$$

Since $F_{1}(z)$ and $G_{1}(z)$ are polynomials of the type (6), we have $\mathcal{M}_{F_{1}} \leq 2^{m-1} R^{m}$, $\mathcal{M}_{G_{1}} \leq 2^{n-1} R^{n}$ and $\mathcal{M}_{F_{1} G_{1}} \geq R^{m+n}$. Thus (5) is obtained from (7).

Corollary 3.1. Let $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)$ be polynomials of degrees m_{1}, m_{2}, \ldots, m_{n}, respectively, on $|z| \leq R(R>1)$. Suppose that $z=0$ is not simple zero of these polynomials. Then

$$
\begin{equation*}
\mathcal{M}_{f_{1} f_{2} \cdots f_{n}} \geq \varepsilon_{1} \mathcal{M}_{f_{1}} \mathcal{M}_{f_{2}} \cdots \mathcal{M}_{f_{n}}, \quad \text { where } \varepsilon_{1}=\frac{1}{2^{m_{1}-1}} \frac{1}{2^{m_{2}-1}} \cdots \frac{1}{2^{m_{n}-1}} \tag{8}
\end{equation*}
$$

Theorem 3.2. Let

$$
f(z)=z^{k} \prod_{i=1}^{m-k}\left(z-R^{2} \alpha_{i}\right) \quad\left(\alpha_{i} \neq 0,\left|\alpha_{i}\right| \leq 1 / R\right)
$$

and

$$
g(z)=z^{r} \prod_{j=1}^{n-r}\left(z-R^{2} \beta_{j}\right) \quad\left(\beta_{j} \neq 0,\left|\beta_{j}\right| \leq 1 / R\right)
$$

be polynomials on $|z| \leq R(R>1)$. Then

$$
\begin{equation*}
\mathcal{M}_{f g} \geq \delta \mathcal{M}_{f} \mathcal{M}_{g}, \quad \text { for } \delta=\frac{1}{2^{m-k}} \frac{1}{2^{n-r}} \tag{9}
\end{equation*}
$$

Proof. Consider $h(z)=z^{s} \prod_{k=1}^{w-s}\left(z-z_{k}\right)$ on $|z| \leq R$. The following inequalities are easily found:

$$
\mathcal{M}_{h} \geq R^{w}, \mathcal{M}_{h} \leq 2^{w-s} R^{w} \text { and } \mathcal{M}_{f} \leq 2^{m-k} R^{k}, \mathcal{M}_{g} \leq 2^{n-r} R^{n}
$$

Let us form now the following polynomials on the circle $|z| \leq R$:

$$
F_{2}(z)=z^{k} \prod_{i=1}^{p-1}\left(z-R^{2} \alpha_{i}\right) \prod_{j=p}^{m-k}\left(z-\frac{1}{\bar{\alpha}_{j}}\right), \quad G_{2}(z)=z^{r} \prod_{i=1}^{q-1}\left(z-R^{2} \beta_{i}\right) \prod_{j=q}^{n-r}\left(z-\frac{1}{\bar{\beta}_{j}}\right)
$$

Taking $\mathcal{A}_{2}=\bar{\alpha}_{p} \cdots \bar{\alpha}_{m-k}, \quad \mathcal{B}_{2}=\bar{\beta}_{q} \cdots \bar{\beta}_{n-r}$, we can write

$$
f(z)=\mathcal{A}_{2} F_{2}(z) \prod_{\mu=p}^{m-k}\left(\frac{R^{2} \alpha_{\mu}-z}{1-\bar{\alpha}_{\mu} z}\right), \quad g(z)=\mathcal{B}_{2} G_{2}(z) \prod_{\eta=q}^{n-r}\left(\frac{R^{2} \beta_{\eta}-z}{1-\bar{\beta}_{\eta} z}\right)
$$

From these equalities the following is deduced:

$$
\begin{aligned}
& \mathcal{M}_{f}=\left|\mathcal{A}_{2}\right| \mathcal{M}_{F_{2}} R^{m-k-p}, \quad \mathcal{M}_{g}=\left|\mathcal{B}_{2}\right| \mathcal{M}_{G_{2}} R^{n-r-q} \\
& \mathcal{M}_{f g}=\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{2}\right| \mathcal{M}_{F_{2} G_{2}} R^{m+n-k-p-r-q}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{\mathcal{M}_{f g}}{\mathcal{M}_{f} \mathcal{M}_{g}}=\frac{\mathcal{M}_{F_{2} G_{2}}}{\mathcal{M}_{F_{2}} \mathcal{M}_{G_{2}}} . \tag{10}
\end{equation*}
$$

But, on the other hand we have $\mathcal{M}_{F_{2}} \leq 2^{m-k} R^{m}, \mathcal{M}_{G_{2}} \leq 2^{n-r} R^{n}$ and $\mathcal{M}_{F_{2} G_{2}} \geq$ R^{m+n}. Thus (9) is obtained from (10).
Corollary 3.2. Let $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)$ be polynomials of degrees m_{1}, m_{2}, \ldots, m_{n}, and suppose that each one accepts $z=0$ as $r_{i}(i=1,2, \ldots, n)$ multiple root, respectively. When $\varepsilon_{2}=\frac{1}{2^{m_{1}-r_{1}}} \frac{1}{2^{m_{2}-r_{2}}} \cdots \frac{1}{2^{m_{n}-r_{n}}}$, then

$$
\begin{equation*}
\mathcal{M}_{f_{1} f_{2} \cdots f_{n}} \geq \varepsilon_{2} \mathcal{M}_{f_{1}} \mathcal{M}_{f_{2}} \cdots \mathcal{M}_{f_{n}} \tag{11}
\end{equation*}
$$

Result. For $\varepsilon_{2}=1$ it is necessary and sufficient that

$$
f_{1}(z)=z^{m_{1}}, f_{2}(z)=z^{m_{2}}, \ldots, f_{n}(z)=z^{m_{n}}
$$

Acknowledgement. I would like to express my thanks to the referre for his helpful suggestions.

REFERENCES

1. A. M. Ostrowski: Notiz Über Maximalwerte Von Polynomen auf dem Einheitskreis. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No 634-637 (1979), 55-56.
2. M. Th. Rassias: A new inequality for complex-valued polynomials functions. Proc. Amer. Math. Soc., 97, 2 (1986), 296-298.
3. E. Mohr: Bemerkung zu der Arbeit Van. A. M. Ostrowski"Notiz Über Maximalwerte Von Polynomen auf dem Einheitskreis. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 3 (1992), 3-4.
4. A. Çelik: A note on Mohr's paper. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 8 (1997), 51-54.
5. A. Çelik: A note on Mohr's paper and some generalizations. IX $^{\text {th }}$ National Symposium of Math., Technical University of Istambul, 1997.
6. G. V. Milovanović, D. S. Mitrinović, M. Th. Rassias: Extremal problems, Inequalities, Zeros. World Scientific Publ. Co., Singapore, New Jersey, London, 1994.

[^0]: 2000 Mathematics Subject Classification: 26D05
 Keywords and Phrases: Polynomial functions, maximum module values, inequality.

