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PRECONDITIONING IN A WAVELET BASIS

AND ITS APPLICATION TO SOME

BOUNDARY VALUE PROBLEMS

Marija Rašajski

Standard finite difference methods applied to the boundary value problem
a (x) u′′ (x) + b (x) u′ (x) + c (x) u (x) = f (x), u (0) = 0, u (1) = 0, lead to
linear systems with large condition numbers. Solving a system, i.e. finding
the inverse of a matrix with a large condition number can be achieved by
some iterative procedure in a large number of iteration steps. By projecting
the matrix of the system into the wavelet basis, and applying a diagonal pre-
conditioner, we obtain a matrix with a small condition number. Computing
the inverse of such a matrix requires fewer iteration steps, and that number
does not grow significantly with the size of the system. Numerical examples,
with various operators, are presented to illustrate the effect preconditioners
have on the condition number, and the number of iteration steps.

1. INTRODUCTION

Consider the boundary value problem

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(x), x ∈ (0, 1)
u(0) = u(1) = 0.

Discretizing the equation on the uniform grid with N points, and applying
some standard finite difference scheme, we get the problem of solving a (large) sys-
tem of linear equations. The matrix of the system is sparse, usually tridiagonal,
with a large condition number, which grows with the dimension of the matrix. (The
condition number of a matrix is the ratio of the largest and the smallest singular
values.) For example, the condition number of the standard matrix corresponding
to the second derivative (with the stencil (1,−2, 1)) grows as N2. The large con-
dition number of a matrix tells us that it would be necessary to perform a large
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number of iterative steps to solve the corresponding system. The method we show
in this paper keeps the condition number under control. We show that for certain
types of problems the condition number does not change much if the size of the
system is increased.

The idea is to project the operator into the wavelet domain, then apply
preconditioner, which is a diagonal matrix in this case, find the inverse matrix,
and project back the solution. We show in several examples the condition number
before and after preconditioning, and the number of iterative steps for computing
the inverse operator with the prescribed accuracy.

2. SOME BASIC NOTIONS OF THE WAVELET THEORY

Let us briefly introduce the notion of wavelets and the multiresolution analysis
([1], [3], [4]).
Definition 1. Multiresolution analysis is a decomposition of the Hilbert space
L2(R) into a chain of closed subspaces

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

such that:

1.
⋂

j∈Z

Vj = {0} and
⋃

j∈Z

Vj is dense in L2 (R).

2. For any f ∈ L2 (R) and any j ∈ Z, f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1.

3. For any f ∈ L2 (R) and any k ∈ Z, f (x) ∈ V0 ⇔ f (x− k) ∈ V0.

4. There exists a scaling function ϕ ∈ V0 such that {ϕ (x− k) , k ∈ Z} is an
orthonormal basis of V0.

For practical purposes we define the finest and the coarsest level of the reso-
lution leading to the following chain of subspaces:

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn, Vn ∈ L2 (R) .

It is easy to see that the scaling function satisfies the dilation equation

ϕ (x) =
N−1∑
k=0

ck
√

2ϕ (2x− k) , ck =
∫
R

ϕ (x)
√

2ϕ (2x− k) dx.

Filter coefficients hk = 1√
2
ck are often used instead of the coefficients ck. These

filter coefficients are all we need in order to apply the wavelet transform. This fact
is the key feature of the wavelet transform, since the most of the wavelets in use
today are not given in the closed form.
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Let Wj be the orthogonal complement of Vj in Vj+1, Vj+1 = Vj ⊕Wj . We get

Vn = V0 ⊕W0 ⊕W1 ⊕ ...⊕Wn−1.

Let us define the translations and dilations of the scaling function ϕ by: ϕjk =
2

j
2ϕ

(
2jx− k

)
, k, j ∈ Z. Then, Vj = span {ϕjk, k ∈ Z}. There exists a function ψ,

called the wavelet, such that Wj = span {ψjk, k ∈ Z}, where ψjk = 2
j
2ψ

(
2jx− k

)
,

k, j ∈ Z, and

ψ(x) = 2
N−1∑
k=0

(−1)N−k−1
hN−k−1ϕ (2x− k) .

The following statements are equivalent:

1.
{
1, x, x2, . . . , xp−1

}
are the linear combinations of the functions ϕ (x− l) .

2.
∥∥∥∥f −∑

l

slϕ
(
2jx− l

)∥∥∥∥ ≤ C2−jp
∥∥f (p)

∥∥, with sl = 2j
∫
R

f (x)ϕ
(
2jx− l

)
dx.

3.
∫
R

xmψ (x) dx = 0, for m = 0, 1, . . . , p− 1, the vanishing moment property.

4.
∫
R

f (x)ψ
(
2jx

)
dx ≤ C2−jp.

Projecting the function f into the space Vj gives the approximation of that
function at the corresponding level, and projecting it into the Wj gives the details.
Representation of a function f in basis

{ϕ0k, ψjk, j ∈ {0, 1, ..., n− 1} , k ∈ Z}

is given by

f (x) ≈
∑
k∈Z

s0kϕ0k (x) +
n−1∑
j=0

∑
k∈Z

dj
kψjk (x) .

Coefficients s0k and dj
k are computed from inner products 〈f, ϕ0k〉 and 〈f, ψjk〉 .

Because of the recursive nature of the equation defining the scaling function, we
get the key feature of the wavelet transform. The integrals defining the inner
products are never computed, but instead, the coefficients of the expansion are
acquired using only the filter coefficients and approximation coefficients from the
previous level. Starting from the point values of the function f at 2n equally
spaced points xk, k ∈ {0, 1, ..., 2n − 1}, we obtain the wavelet coefficients in n steps
of decomposition. At one level of decomposition, starting from 2j approximation
coefficients, two sets of coefficients are computed: 2j−1 approximation coefficients,
and 2j−1 detail coefficients.

In this paper we use so-called periodized wavelets, which are suitable for
functions defined on an interval, and that is what we are dealing with in this paper.
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Figure 1: Wavelet Db6

The wavelet transform is usually performed via pyramid algorithm, because of its
efficiency. Another way is by constructing the matrix W of the wavelet transform.
Then, the wavelet transform of a vector v is achieved by matrix multiplication Wv.
Wavelet transform is orthogonal, and therefore W−1 = WT . Application of the
wavelet transform to a matrix M is achieved by computing WMWT .

3. THE INVERSE OPERATOR IN THE WAVELET BASIS

The first step is the periodization of the matrix corresponding to the differen-
tial operator of a given problem. The periodizations means the “wrapping around”
of the coefficients in the matrix. For example consider the matrix D2 corresponding
to the periodized second derivative:

D2 =


−2 1 0 · · · 0 0 1
1 −2 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −2 1
1 0 0 · · · 0 1 −2

 .
Diagonal preconditioning can work for any finite difference matrix, corre-

sponding to a periodized differential operator [2].
Consider the discretized problem Lu = f , where L is a difference operator.

Let Lp be the periodized matrix corresponding to L (the size of the matrices is N).
Following the work of [2], but with the different ordering of the matrix of the wavelet
transform, we find the inverse of the operator Lp (and then L). Briefly, we apply
wavelet transform to the matrix Lp, W (Lp) = WLpW

T . It is easily shown that
the first column of the matrix W (Lp) is a zero column, thus the problem is reduced
to finding the inverse of a matrix B (of size N − 1). Since the wavelet transform is



90 Marija Rašajski

Figure 2: Operators

orthogonal, the condition number does not change after transformation. We apply
preconditioning to the matrix B (in the wavelet domain), and by that obtain a
matrix with a condition number which does not change much if N is increased.
The important thing to mention is that both, the matrix B and its inverse B−1,
are sparse matrices. Their sparsity pattern, with the entries with the absolute value
greater than 10−9, are shown in Figure 2.

The preconditioner that we use in this paper is a diagonal matrix with the
powers of 2 on the diagonal (with the size of N = 2n):

P = diag(2n, 2n︸ ︷︷ ︸
2

, 2n−1, 2n−1︸ ︷︷ ︸
2

, 2n−2, 2n−2, 2n−2, 2n−2︸ ︷︷ ︸
22

, . . .

. . . , 2i, 2i, . . . , 2i, 2i︸ ︷︷ ︸
2n−i

, . . . , 22, . . . , 22︸ ︷︷ ︸
2n−2

, 2, . . . , 2︸ ︷︷ ︸
2n−1

).

The preconditioning of a given matrix X is achieved by matrix multiplication:
XP = PXP . When we compute the inverse matrix X−1

P , we get the inverse
X−1 = PX−1

P P .

4. NUMERICAL EXAMPLES - THE CONDITION NUMBER

The following tables show the condition numbers of various operators with
and without preconditioning (kp and k, respectively). Daubechies wavelets of or-
ders 3, 4, 6, 8 are used in these examples. The size of the matrices is denoted by
N . The same diagonal preconditioner P is used for all operators. We see from
the tables that, when preconditioning is applied to the operators with dominating
coefficient with the second derivative, the resulting condition number is practically
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independent of the size of the problem. From other two tables we see that this does
not hold for the operators in which the function with the second derivative is not
that dominant. But, the condition number does not grow that much if we increase
the dimension of the problem. Practically, it stays under control, and regulates the
number of the iterations needed for computing the inverse of the operator.

Operator: Lu ≡ u′′ Lu ≡ 25u′′ − xu

Wavelet N
db3 64
db4 64
db6 64
db8 64
db3 128
db4 128
db6 128
db8 128
db3 256
db4 256
db6 256
db8 256
db3 512
db4 512
db6 512
db8 512

k kp
4.153451e+002 9.085871
4.153451e+002 6.697578
4.153451e+002 5.261028
4.153451e+002 4.992119
1.660380e+003 10.01903
1.660380e+003 6.990916
1.660380e+003 5.289686
1.660380e+003 4.997137
6.640518e+003 10.84062
6.640518e+003 7.218768
6.640518e+003 5.303512
6.640518e+003 4.998509
2.656107e+004 11.56212
2.656107e+004 7.398805
2.656107e+004 5.310329
2.656107e+004 4.998877

k kp
4.151735e+002 9.087316
4.151735e+002 6.698821
4.151735e+002 5.263435
4.151735e+002 4.994146
1.659683e+003 10.02027
1.659683e+003 6.992004
1.659683e+003 5.292075
1.659683e+003 4.999176
6.637711e+003 10.84169
6.637711e+003 7.219714
6.637711e+003 5.305874
6.637711e+003 5.000558
2.654980e+004 11.56303
2.654980e+004 7.399627
2.654980e+004 5.312670
2.654980e+004 5.000933

Operator: Lu ≡
(
x2 + 1

)
u′′ + u Lu ≡

(
x3 + 1

)
u′′ − 3x2u′ + 3xu

Wavelet N
db3 64
db4 64
db6 64
db8 64
db3 128
db4 128
db6 128
db8 128
db3 256
db4 256
db6 256
db8 256
db3 512
db4 512
db6 512
db8 512

k kp
6.446490e+002 16.08324
6.446490e+002 10.26399
6.446490e+002 10.17642
6.446490e+002 9.694400
2.659956e+003 19.95304
2.659956e+003 13.71226
2.659956e+003 14.22476
2.659956e+003 12.09301
1.085734e+004 28.25572
1.085734e+004 20.28615
1.085734e+004 22.17994
1.085734e+004 19.07107
4.399693e+004 43.94376
4.399693e+004 36.06684
4.399693e+004 37.64197
4.399693e+004 33.61918

k kp
6.662824e+002 16.41038
6.662824e+002 9.616045
6.662824e+002 9.894164
6.662824e+002 9.830358
2.781817e+003 19.78578
2.781817e+003 12.20485
2.781817e+003 14.04340
2.781817e+003 11.85213
1.143952e+004 27.31360
1.143952e+004 18.31685
1.143952e+004 22.15356
1.143952e+004 17.53844
4.657174e+004 41.81697
4.657174e+004 32.66964
4.657174e+004 37.83663
4.657174e+004 30.49973
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5. NUMERICAL EXAMPLES - THE NUMBER OF ITERATIONS
IN COMPUTING THE INVERSE MATRIX

The next thing to mention is the algorithm for computing the inverse matrix.
Proposition 1. [3] Consider the sequence of matrices Xk, Xk+1 = 2Xk −XkAXk

with X0 = αA∗, where A∗ is the adjoint matrix and α is chosen so that the largest
eigenvalue of αA∗A is less than two. Then the sequence Xk converges to the gen-
eralized inverse A†.

When dealing with operators in a wavelet basis, the inverse can be computed
in at most O(N log2N logC) operations, if the operator is in the standard form,
and in O(N logC), if the operator is in the so-called non-standard form (C is the
condition number of the matrix). In this paper we use the standard form.

Let us introduce the following notations: L1u ≡ u′′, L2u ≡ 25u′′ − xu,
L3u ≡ (x3+1)u′′−3x2u′+3xu, L4u ≡ (x2+1)u′′+u, L5u ≡ (x+1)u′′+xu′−u. For
operators L1, L2, L3, L4, L5 we computed the inverse operators and the number of
iterations is shown in the tables. L is the matrix of the discretized operator, B is the
matrix obtained from Lby the application of the wavelet transform, as described
before, and BP = PBP , where P is the preconditioner. In the columns below
B−1

P , B−1, L−1 are the numbers of the iterations performed to compute those ma-
trices. The initial matrix X0 (from the Proposition 1) is set to be X0 = 1.92

σ1
B∗

PBP ,
where σ1 is the largest singular value of the matrix B∗

PBP . The iterations are
performed until the condition ‖BPXk − I‖ < ε is satisfied.

L1 ε = 10−4 wavelet= db6
N B−1

P B−1 X−1

31 7 16 20
63 8 20 24
127 8 24 28
255 8 28 32
511 8 32 36

L1 ε = 10−8 wavelet= db6
N B−1

P B−1 X−1

31 8 17 21
63 9 21 25
127 9 25 29
255 9 29 33
511 9 33 37

L2 ε = 10−8 wavelet= db6
N B−1

P B−1 X−1

31 8 17 21
63 9 21 25
127 9 25 29
255 9 29 33
511 9 33 > 75

L2 ε = 10−8 wavelet= db3
N B−1

P B−1 X−1

31 10 17 21
63 10 21 25
127 10 25 29
255 11 29 33
511 11 33 > 75

L3 ε = 10−4 wavelet= db6
N B−1

P B−1 X−1

31 9 17 22
63 9 22 26
127 10 26 30
255 12 30 34
511 13 34 38

L3 ε = 10−2 wavelet= db6
N B−1

P B−1 X−1

31 8 16 21
63 8 21 25
127 9 25 29
255 11 29 33
511 12 33 37
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L3 ε = 10−8 wavelet= db6
N B−1

P B−1 L−1

31 10 18 23
63 10 23 27
127 11 27 31
255 13 31 35
511 14 35 > 75

L3 ε = 10−8 wavelet= db3
N B−1

P B−1 L−1

31 11 18 23
63 12 23 27
127 12 27 31
255 13 31 35
511 15 35 > 75

L4 ε = 10−8 wavelet= db6
N B−1

P B−1 L−1

31 10 18 22
63 10 22 26
127 11 27 31
255 13 31 35
511 14 35 > 75

L5 ε = 10−8 wavelet= db6
N B−1

P B−1 L−1

31 10 18 22
63 10 22 26
127 11 26 30
255 13 30 34
511 14 34 38

6. CONCLUSIONS AND THE FUTURE WORK

There are diagonal preconditioners for the boundary value problem repre-
sented in the wavelet basis. Thus, it is possible to perform all necessary algebraic
calculations with sparse matrices with a small condition number. The inverse ma-
trix is also sparse in the wavelet domain, and that property speeds up the calcu-
lations. Solving the corresponding linear system requires O (N) operations. The
wavelets of higher order, the smoother wavelets, give smaller condition numbers,
and fewer iteration steps in the algorithm of finding the inverse matrix.

What remains to be explored is the application of the similar methods to
the partial differential equations. Also, the representation of operators in the non-
standard form and the implementation of fast algorithms for matrices of that form,
are some of the objectives.
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