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NUMERICAL CONSTRUCTION OF THE

GENERALIZED HERMITE POLYNOMIALS

Gradimir V. Milovanović, Aleksandar S. Cvetković

In this paper we are concerned with polynomials orthogonal with respect

to the generalized Hermite weight function w(x) = |x − z|γ exp(−x2) on R,

where z ∈ R and γ > −1. We give a numerically stable method for finding re-

cursion coefficients in the three term recurrence relation for such orthogonal

polynomials, using some nonlinear recurrence relations, asymptotic expan-

sions, as well as the discretized Stieltjes-Gautschi procedure.

1. INTRODUCTION

The main purpose of this paper is the construction and investigation of a
stable numerical method for finding recursion coefficients in the fundamental three
term recurrence relation for polynomials orthogonal with respect to the following
weight function

w(x) = w(x; z) = |x − z|γe−x2
on R, (1)

where γ > −1 and z ∈ R. This weight function is a direct generalization of the
generalized Hermite weight function w(x; 0) = |x|γ exp(−x2), γ > −1.

Knowing the first n of these recursion coefficients, one can easily obtain the
corresponding N -point Gaussian quadrature formula for any N , with 1 ≤ N ≤ n,
using QR algorithm (cf. [2], [4]).

Applications of the previous weight functions, as well as the corresponding
orthogonal polynomials, are various. Such weights appear frequently as density
functions for some random variables in statistical mechanics, quantum mechanics,
etc.
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2. NONLINEAR RECURRENCE RELATIONS

By πn = πn(·; z) we denote monic orthogonal polynomial of degree n with
respect to weight function w = w(·; z). Then, since the weight function w is positive,
we know that the monic orthogonal polynomials can be constructed (see [1]) and
they satisfy the following orthogonality condition∫

R

πn(x)πm(x)w(x) dx = ||πn||2δn,m, ||πn|| > 0, n,m ∈ N0. (2)

Using Favard theorem (see e.g., [1]), we know that the monic orthogonal
polynomial sequence satisfy the following three term recurrence relation

πn+1(x) = (x − αn)πn(x) − βnπn−1(x), n ∈ N0, π0(x) = 1, π−1(x) = 0. (3)

It is known that the recursion coefficients are such that αn ∈ R and βn > 0, n ∈ N0,
where β0 can be chosen arbitrarily. Sometimes, it is convenient to define it by
β0 =

∫
R

w(x) dx.
By simple change of the variable x := −x in (2), it can be seen that πn(x; z) =

(−1)nπn(−x;−z), as well as αn(z) = −αn(−z), βn(z) = βn(−z), n ∈ N0. Thus,
we will consider only the case when z > 0.

Defining sn, n ∈ N0, in the following way

sn =
∫

R

(x − z)π2
nw dx,

and using (3), we have ([1], [4])

αn − z =
1

||πn||2
∫

R

(x − z)π2
nw dx =

sn

||πn||2 , βn =
||πn||2

||πn−1||2 , n ∈ N0,

where we put, by convention, ||π−1|| = 1. Also, it can be proved easily, using the
three term recurrence relation (3), that the following holds

||πn||2 =
∫

R

(x − z)πnπn−1w dx, n ∈ N.

Replacing in this equation πn, expressed from the three term recurrence relation,
we get the following relation

βn + βn−1 + (αn−1 − z)2 =
1

||πn−1||2
∫

R

(x − z)2π2
n−1w dx, n ∈ N.

Also, applying the same transformation to the definition of sn, we get the second
recurrence relation for the three term recurrence coefficients, i.e.,

αn + αn−1 − 2z =
1

||πn||2
∫

R

(x − z)2πnπn−1w dx, n ∈ N.
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These relations are know for a long time, although, in a different settings
z = 0. They are presented, for example, in [2] and [3].

It is a basic fact that integrals appearing on the right hand sides of the equa-
tions can be integrated by parts which enables an interpretation of these integrals
over three term recurrence coefficients.

First, note that for each x ∈ R\{z} we have that the following is satisfied

[(x − z)|x − z|γ ]′ = (γ + 1)|x − z|γ ,

so that, for the first integral, we have

βn + βn−1 + (αn−1 − z)2 =
1

||πn−1||2
∫

R

(x − z)2π2
n−1w dx

= −z(αn−1 − z) − 1
2||πn−1||2

∫
R

(x − z)|x − z|γπ2
n−1(e

−x2
)′ dx

= −z(αn−1 − z) +
1

2||πn−1||2
∫

R

[
(γ + 1)π2

n−1 + 2(x − z)πn−1π
′
n−1

]
w dx

= −z(αn−1 − z) +
1
2
(2n − 1 + γ).

This gives the following relation

βn + βn−1 + αn−1(αn−1 − z) =
2n − 1 + γ

2
. (4)

For the second integral, applying the same integration by parts, substituting

(x − z)πn−1 = πn + (αn−1 − z)πn−1 + βn−1πn−2

and
π′

n = πn−1 + (x − αn−1)π′
n−1 − βn−1π

′
n−2,

we get

||πn||2(αn + αn−1 − z) =
1
2

∫
R

(x − z)π′
nπn−1w dx

=
1
2

[
(αn−1 − z)||πn−1||2 + (n − 1)(αn−1 − z)||πn−1||2

+βn−1(z − αn−1)(n − 1)||πn−2||2
]
+

βn−1

2

∫
R

(x − z)π′
n−1πn−2w dx

=
[
1
2
(αn−1 − z) + βn−1(αn−1 + αn−2 − z)

]
||πn−1||2,

i.e.,

βn(αn + αn−1 − z) =
1
2
(αn−1 − z) + βn−1(αn−1 + αn−2 − z). (5)
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As in [3], multiplying (5) by αn−1 and substituting αn−1(αn−1 − z) from (4), we
obtain

αnαn−1βn −
(

n + γ/2
2

− βn

)2

= αn−1αn−2βn−1 −
(

n − 1 + γ/2
2

− βn−1

)2

.

It is clear, this quantity is independent on n. For n = 1, from (4) and (5), we find

β1 + α0(α0 − z) =
γ + 1

2
, β1(α1 + α0 − z) =

1
2
(α0 − z),

which after some manipulation gives

α1α0β1 −
(

1 + γ/2
2

− β1

)2

= αnαn−1βn −
(

n + γ/2
2

− βn

)2

= −γ2

16
. (6)

Note that choosing a combination (4) and (6), as starting values we need only α0,
i.e., we need only s0 and ||π0||2.

In order (4) and (5) to be applicable for calculations we need the coefficient
α0, which can be expressed in an explicit form

α0 = −z

(
(γ + 1)1F1(−γ/2, 3/2,−z2)

1F1(−γ/2, 1/2,−z2)
+ 1

)
.

Also, we have

β0 =
∫

R

w(x) dx = e−z2
Γ

(
1 + γ

2

)
1F1

(
1 + γ

2
,
1
2
, z2

)
.

3. NUMERICAL CONSTRUCTION OF THREE TERM
RECURRENCE COEFFICIENTS

In this section we give a numerical methods for construction recursion coef-
ficients αn and βn for the weight function w. Our method depends strongly on z.
According to the range z, different methods should be applied in construction of
the three term recurrence coefficients.

All computations, presented in this section, are performed in double precision
arithmetic with machine precision (m.p. ≈ 2.22 × 10−16).

Case z ∈ (0,5). Given α0 the construction proceeds straightforward. Na-
mely, for a given αn−1 we calculate βn using (4), and then for such βn we calculate
αn using (5).

It is an amazing fact, this construction works for the weight function w,
provided z is sufficiently small. As an example, we present results for z = 1/3 and
γ = −1/2 in Table 1. Numbers in parentheses indicate decimal exponents, i.e.,
x(m) = x × 10m.
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n αn r
(1)
n r

(2)
n βn

0 1.604974533946931(−1) m.p. m.p. 3.433209278590652
1 −1.383113351931182(−1) m.p. m.p. 2.777397185853827(−1)
2 1.163735907797128(−1) m.p. m.p. 9.070264775740081(−1)
3 −9.784310002138714(−2) m.p. m.p. 1.368221906721599
4 7.984368934809036(−2) 1(−15) 4(−16) 1.839590454382810
5 −6.455428349329288(−2) 7(−16) 4(−16) 2.430649094004505
6 4.995871370080372(−2) 7(−16) 5(−16) 2.793665555980398
7 −3.752641420292943(−2) 8(−16) 7(−16) 3.470491475511898
8 2.586370101338528(−2) 7(−16) 1(−15) 3.765591487990863
9 −1.593470946824870(−2) 5(−15) 4(−16) 4.492360814650156

10 6.789555242436285(−3) 1(−14) 9(−15) 4.752073700561257
11 9.604656281837112(−4) 2(−13) 1(−14) 5.500143386459166
12 −7.954348185129339(−3) 4(−14) 6(−15) 5.750175846256006
13 1.382125980653763(−2) 3(−14) 5(−16) 6.497109432693900
14 −1.898687887021462(−2) 2(−14) 7(−16) 6.757306626685639
15 2.323925670588782(−2) 2(−14) 1(−15) 7.486003912121723
16 −2.686128871467686(−2) 1(−14) 7(−16) 7.771202443727997
17 2.974176256843383(−2) 1(−14) 2(−15) 8.469122264535697
18 −3.207084600755667(−2) 1(−14) 2(−15) 8.789907083879770
19 3.379754383265745(−2) 2(−14) 2(−15) 9.448374094954070
20 −3.505402513131707(−2) 1(−14) 2(−15) 9.811749479021028
21 3.582208040587151(−2) 1(−14) 2(−15) 1.042533706125729(1)
22 −3.619929812410516(−2) 1(−14) 1(−15) 1.083532041076673(1)
23 3.618238733331904(−2) 1(−14) 7(−16) 1.140130276734056(1)
24 −3.584956518330079(−2) 9(−15) 3(−16) 1.185944886328407(1)
25 3.520144786001178(−2) 9(−15) m.p. 1.237731609033100(1)
26 −3.430625453994549(−2) 8(−15) m.p. 1.288317858369090(1)
27 3.316229361164631(−2) 9(−15) m.p. 1.335420907902856(1)
28 −3.183311728564849(−2) 8(−15) m.p. 1.390574528112441(1)
29 3.031176214840014(−2) 1(−14) m.p. 1.433263033242426(1)
30 −2.865973918507802(−2) 1(−14) 9(−16) 1.492655478536734(1)
99 −5.853017337313245(−4) 4(−12) 1(−12) 4.949983398795690(1)

100 −2.527116010163625(−4) 1(−11) 3(−12) 4.974997056888707(1)
101 1.074640398629048(−3) 2(−12) 7(−13) 5.049994513004944(1)
199 −8.458109437422345(−3) 2(−13) 3(−15) 9.928135827367433(1)
200 8.739329900268865(−3) 2(−13) 1(−15) 9.996575081689794(1)

Table 1: Recursion coefficients for z = 1/3, γ = −1/2 and the relative errors in
α-coefficients: r

(1)
n (using (4) and (5)) and r

(2)
n (using (7) and (5))
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As it can be seen in this case, the maximal relative error in α-coefficients is
of order 1(−12). However, β-coefficients are constructed with machine precision.
It is important to say that the error is not propagated. The maximal relative error
for α-coefficients appears for n = 100, but for n = 200 the relative error in α200 is
of order 1(−15).

A construction can be even improved if the equation (4) is rewritten in the
form

βn − βn−2 + αn−1(αn−1 − z) − αn−2(αn−2 − z) (7)

=
2n − 1 + γ

2
− 2n − 3 + γ

2
= 1.

Using this equation instead of (4) for the calculation of βn, we save at least one
significant digit in the calculation.

Increasing γ produces even better results. For example, taking γ = 10 and
z = 1/3 gives the maximal relative error in α-coefficients of order of magnitude
1(−14), while β-coefficients are given with machine precision (in our case, m.p. ≈
2.22 × 10−16).

It is important to say that since the limit of α-coefficients is zero, the errors
in α-coefficients should be measured as absolute errors instead of relative errors.
Using this criterion, the error in α-coefficients have a magnitude of 1(−15), i.e.,
only one significant digit is lost and the error is not propagated.

A reason for such good results can be understood straightforward. It is
known that for the weight function w, the asymptotical behavior of the three term
recurrence coefficients is given by

αn → 0, βn → n

2
, n → +∞.

If we look at equation (7) it can be seen clearly that asymptotically it really reduces
to βn ≈ βn−2 +1, which means no cancellation effect is present. Also, investigating
(5) it can be seen clearly that we have the following asymptotic form αn ≈ αn−2 +
O (1/n), which again makes it asymptotically perfect for calculations.

There is one more effect which makes calculation stable. It seems that α-
coefficients satisfy the condition αnαn−1 < 0, which disables the cancellation of
significant digits since in (7) we do not have a subtraction of the terms αn(αn − z),
but rather their addition, since two terms are of different signs.

Equation (6) is not useful for calculations, which can be easily understood,
since it has serious cancellation problems. Namely, as n → +∞ it is clear that
the term ((n + γ/2)/2− βn)2 − γ2/16 introduces a cancellation of significant digits
which grows linearly with n.

The system of equations (7) and (5) gives good results for a sufficiently small
z and it can be used for a construction provided z < 5. For example, taking
z = 5, γ = −1/2, we get the maximal relative error in α-coefficients of order
1(−7), and for β-coefficients of order 1(−12), for first 200 coefficients.
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Case z > 50. To understand what is happening with calculations when z is
increased, we introduce

gn =
n + γ/2

2
− βn, n ∈ N.

According to (4) it is clear that α-coefficients can be given by

αn(αn − z) = gn+1 + gn.

Using αn → 0, n → +∞, we know that

αn =
z

2
(
1 −

√
1 + 4G′

n

)
, G′

n =
gn+1 + gn

z2
, n ∈ N.

To have shorter expressions we introduce Y = n + γ/2.
Using all previously defined quantities, and using squaring to the equation

(5) to eliminate square roots, we have

An = βn − βn−1 − 1/2, Gn = z2G′
n,

z2Bn = β2
n(z2 + 4Gn) + β2

n−1(z
2 + 4Gn−2) − (z2 + 4Gn−1)A2

n,

z4Cn = (z2Bn)2 + 4β2
nβ2

n−1(z
2 + 4Gn)(z2 + 4Gn−2) − z2(z2 + 4Gn−1)A2

n,

(z4Cn)2 − 16β2
nβ2

n−1(z
2Bn)2(z2 + 4Gn)(z2 + 4Gn−2) = 0. (8)

The last equation is really an equation to which (5) is transformed. It can
be checked (using some computer algebra, for example Mathematica, Maple), that
highest term in Y survives. For z small enough, the equation can always be written
in terms of two most dominant terms in Y , which are Y 8 and Y 7. It becomes

Y 8(Gn − Gn−2) + 2Y 7
{
4[Gn−2(1 + 2gn−1) − 2gnGn] + z2(1 + 2gn−1 − 2gn)

}
= 0

or it can be rewritten in the form

gn+1 = −gn +
Y Gn−2

Y − 16gn
− 8Gn−2(1 + 2gn−1) − 2z2(1 + 2gn−1 + 2gn)

Y − 16gn
. (9)

This clearly shows that this equation is stable, since the error in gn is not amplified
when gn+1 is evaluated. Note, also that for z = 0, three term recurrence coefficients
are αk = 0, k ∈ N0, β2k = k, β2k−1 = (2k − 1 + γ)/2, k ∈ N, we have g2k = γ/4
and g2k−1 = −γ/4, k ∈ N. Letting z to be very close to zero, the values for gn

are not changed to much, we can expect lost of significant digits in α-coefficients,
since αn ≈ Gn/z. Actually, this effect does not take place or rather is very hard
to catch it. For example, taking z = 1(−10), γ = −1/2, the maximal relative
error in α-coefficients does not exceed 1(−15), while with z = 1(−5), γ = −1/2, it
produces the maximal relative error of the order 1(−12). A full effect of the loss
of significant digits in α-coefficients, as z → 0, can be seen if we choose γ close to
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zero. However, this loss of significant digits appears only in α-coefficients and can
be fully understood, since in that case, also, we have that α-coefficients are nearly
zero. For example, with z = 1(−5) and γ = 1(−10) there are only 5− 6 significant
digits in α-coefficients and almost all 16 in β-coefficients. This can be understood
in site of (9), since in this case Gn−2 is calculated with a very small precision.

An analysis for large z and n relatively small can also be performed using the
same definition for gn and (8). It turns out that the coefficient with z8 is cancelled
out identically which really produces loss of significant digits in calculations. Also,
the corresponding term with z6 is

32
(
gn−1 − Y − 1

2

)(
gn−1 − Y

2

)(
gn − Y − 1

2

)(
gn − Y

2

)[
1 + 2(gn−1 − gn)

]
×

×(gn − gn−1)
[
2gngn+1 − 2gn−1gn−2 − Gn−2 + Y (Gn−2 − Gn)

]
,

and the term with z4 is to complicated to be written. It can be seen that degree
of Y which appears in the coefficient with z6 is Y 5, and in the coefficient with z4

is Y 6. From this information it can be understood that while n < z2 the dominant
terms in (8) are those with z6 and z4. When n becomes larger then z2 again the
equation is dominated by the terms in Y . However, equation (8) is unstable for
numerical calculations while n < z2, this because of the fact that term with z8 is
cancelled out. Taking z = 10, γ = −1/2, it produces complete loss of significant
digits in α- and β-coefficients for n = 10. In each iteration two significant digits are
lost. Note that we are using n rather than Y = n + γ/2 for the reasons we discuss
in the sequel.

To understand fully behavior of gn for large z, we use equation (6), which we
transform into the form

An = 4
g2

n − γ2/16
βn

,

4A2
n(z2 + 4Gn)(z2 + 4Gn−1) =

[
(An − z2)2 − z4 + 16GnGn−1

]2
.

Performing all calculations we get the following reduced form

an = g2
n − γ2/16,

z2anβn(an + βnGn)(an + βnGn−1) −
(
a2

n − β2
nGnGn−1

)2
= 0. (10)

It is clear that the original equation (6) is not stable for calculation for large z,
since terms with z8, z6, z4 are identically cancelled out. What can be seen from this
equation is the behavior of gn. In order for two terms to be comparable, gn is very
close to γ/4 for small n. This conclusion can be drown, also, from the definition
of gn = (n + γ/2)/2 − βn. For large z it is clear that the influence of the factor
|x − z|γ in w is almost neglectful, for small powers of x, since, the influence of
|x − z|γ to the moments of w is neglectful. For small values of n and large z, it is
quite understandable that β-coefficients are almost the same as for the Hermite

weight w(x; 0) = exp(−x2), i.e., n/2.
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According to the fact gn ≈ γ/4, it can be easily understood, why we need
that z2 has to be dominated by n instead of n + γ/2. If latter is the case, then
we know that gn ≈ γ/4. Applying this to equation (9) we can easily find that the
second term is amplified for Y ≈ 16gn, which produces an amplification of error in
gn+1 of the term Gn−2, but also of the term with z2, i.e., term 1 + 2gn−1 − 2gn.
This causes a loss of significant digits when Y instead of n dominates z.

Performing all numerical calculations in an extended precision (using Math-
ematica, for example, we can work with 1000 digits length in mantissa), a typical
behavior of the sequence gn is given in Figure 1 for z = 1, γ = −1/2 (top) and for
z = 10, γ = −1/2 (bottom).

100 200 300 400 500

-0.1

-0.05

0.05

0.1

100 200 300 400 500

-0.6

-0.4

-0.2

0.2

0.4

Figure 1: The sequence gn for z = 1, γ = −1/2 (top) and z = 10, γ = −1/2
(bottom)

The pick in Figure 1 (bottom) can be explained using equation (10). As it
can be seen from the figure for z = 10, γ = −1/2, when n < z2/2, the sequence gn

has quite different behavior than for n > z2/2. For n > z2/2 the behavior is pretty
much the same as for z = 1, γ = −1/2. Substituting dn = gn −γ/4, performing all
calculations and neglecting all terms, except linear in terms of the sequence {dn}
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(note that for small n we have dn ≈ 0), we can develop the following relation

dn ≈ n
γ/4 + (dn+1 + dn−1)/2

z2/2 − n + γ
.

It is clear that the mentioned pick in the sequence gn appears for z2/2−n+γ ≈ 0.
This point also shows that “the transient regime” ends for n > z2/2 + γ. After
this point, the calculation can be continued using equations (7) and (5), and this
calculation is numerically stable.

For a large z, we can search for an asymptotic formula for gn.

Lemma. Let

a(1)
n =

γn

4
, a(2)

n =
3
8
γn(n − γ), a(3)

n =
5
16

γn(2n2 − 5γn + 2γ2 + 1),

a(4)
n =

7
32

γn(n − γ)(5n2 − 17γn + 5γ2 + 10),

a(5)
n =

9
64

γn
[
14n4 − 93γn3 + (70 + 164γ2)n2 − (167 + 93γ2)γn

+21 + 70γ2 + 14γ4
]
,

a(6)
n =

11
128

γn(n − γ)
[
(42n4 − 344γn3 + (420 + 686γ2)n2 − (1300 + 344γ2)γn

+483 + 420γ2 + 42γ4
]
,

a(7)
n =

13
256

γn
[
132n6 − 1586γn5 + (2310 + 5868γ2)n4 − (14065 + 8885γ2)γn3

+(6468 + 24169γ2 + 5868γ4)n2 − (15018 + 14065γ2 + 1586γ4)γn

+1485 + 6468γ2 + 2310γ4 + 132γ6
]

and

∆n =
15

32768
γ4n4(n − γ)

[
429n6 − 6047γn5 + (12012 + 25341γ2)n4

−(88144 + 40613γ2)γn3 + (66066 + 167972γ2 + 25341γ4)n2

−(192906 + 88144γ2 + 6047γ4)γn + 56628 + 66066γ2 + 12012γ4 + 429γ6
]
.

Then, choosing

gn =
γ

4
+

a
(1)
n

z2
+

a
(2)
n

z4
+

a
(3)
n

z6
+

a
(4)
n

z8
+

a
(5)
n

z10
+

a
(6)
n

z12
+

a
(7)
n

z14
,

the left hand side in equation (10) reduces to

z2anβn(an + βnGn)(an + βnGn−1) −
(
a2

n − β2
nGnGn−1

)2
=

∆n

z14
+ O

(
1

z16

)
.
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Proof. The proof can be given by a direct calculation. However, a such calculation
can be done hardly by hand, instead some computer algebra should be used. We
used Mathematica. �

Using this Lemma for a large z we can give some asymptotic formulae for
coefficients αn and βn. For α-coefficients we have

αn ≈ 1
2

(
A

(1)
n

z
+

A
(2)
n

z3
+

A
(3)
n

z5
+

A
(4)
n

z7
+

A
(5)
n

z9
+

A
(6)
n

z11
+

A
(7)
n

z13

)
, (11)

where

A(1)
n = −γ, A(2)

n =
1
2
(γ2 − 4Sa(1)

n ), A(3)
n =

1
2
(−4Sa(2)

n + 4γSa(1)
n − γ3),

A(4)
n =

1
8

(
16(Sa(1)

n )3 − 16Sa(3)
n + 16Sa(2)

n − 24γ2Sa(1)
n + 5γ4

)
,

A(5)
n =

1
8

(
32Sa(1)

n Sa(2)
n − 16Sa(4)

n − 48γ(Sa(1)
n )2 + 16γSa(3)

n − 24γ2Sa(2)
n

+40γ3Sa(1)
n − 7γ5

)
,

A(6)
n =

1
16

(
−64(Sa(1)

n )2 + 32(Sa(2)
n )2 + 64Sa(1)

n Sa(3)
n − 32Sa(5)

n −192γSa(1)
n Sa(2)

n

+32γSa(4)
n + 240γ2(Sa(1)

n )2−48γ2Sa(3)
n +80γ3Sa(2)

n −140γ4Sa(1)
n +21γ6

)
,

A(7)
n =

1
16

(
−192(Sa(1)

n )2Sa(2)
n +64Sa(2)

n Sa(3)
n +64Sa(1)

n Sa(4)
n −32Sa(6)

n +32γSa(5)
n

+320γ(Sa(1)
n )3−96γ(Sa(2)

n )2−192γSa(1)
n Sa(3)

n +480γ2Sa(1)
n Sa(2)

n

−48γ2Sa(4)
n −560γ3(Sa(1)
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n −140γ4Sa(2)

n + 252γ5Sa(1)
n −33γ7

)
and Sa

(ν)
n = a

(ν)
n + a

(ν)
n+1. For β-coefficients we have

βn ≈ n

2
−

(
a
(1)
n

z2
+

a
(2)
n

z4
+

a
(3)
n

z6
+

a
(4)
n

z8
+

a
(5)
n

z10
+

a
(6)
n

z12
+

a
(7)
n

z14

)
. (12)

These asymptotic formulae for α- and β-coefficients can be successfully ap-
plied for z > 50. For example, the error introduced in α100 for z = 50, γ = −1/2,
is of order 1(−10), and for β100 it is of order 6(−11). For achieving all 16 significant
digits, z has to be bigger than 140, with γ which is not significantly bigger than 1 in
modulus. As an example, in Table 2 we present three term recurrence coefficients
for z = 200, γ = −1/2.

Case z ∈ (4,50). In order to calculate three term recurrence coefficients in
this case, we apply the discretized Stieltjes-Gautschi procedure (see [2]). The
basic idea of this procedure is to use Darboux formulas for recursion coefficients

αk =

∫
R

xπ2
kw dx∫

R

π2
kw dx

, βk =

∫
R

π2
kw dx∫

R

π2
k−1w dx

, (13)
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which are a direct consequence of the three term recurrence relation (3), and nu-
merically calculate the integrals in (13). For these integrals we use a Gaussian
quadrature rule with respect to some appropriate weight function W which is not
very different from w. Such approach provides a sufficiently good approximation
for integrals of the form

∫
R

Pw dx, where P is an algebraic polynomial.

n αn βn

0 1.250023438671966(−3) 1.253320012386169(−1)
1 1.250054691992686(−3) 5.000031251757959(−1)
2 1.250085947657757(−3) 1.000006250586008
3 1.250117205667472(−3) 1.500009376230666
4 1.250148466022123(−3) 2.000012502109800
5 1.250179728722005(−3) 2.500015628223438
6 1.250210993767411(−3) 3.000018754571609
7 1.250242261158633(−3) 3.500021881154344
8 1.250273530895966(−3) 4.000025007971671
9 1.250304802979701(−3) 4.500028135023618
10 1.250336077410134(−3) 5.000031262310220
11 1.250367354187558(−3) 5.500034389831500
12 1.250398633312265(−3) 6.000037517587491
13 1.250429914784550(−3) 6.500040645578220
14 1.250461198604707(−3) 7.000043773803718
15 1.250492484773028(−3) 7.500046902264014
16 1.250523773289809(−3) 8.000050030959137
17 1.250555064155342(−3) 8.500053159889117
18 1.250586357369922(−3) 9.000056289053983
19 1.250617652933842(−3) 9.500059418453764
20 1.250648950847397(−3) 1.000006254808849(1)

Table 2: Recursion coefficients for z = 200, γ = −1/2, calculated using asymptotic
expansions (11) and (12)

Let z ∈ (4, 50) and w(x) = w(x; z), defined by (1). Then, for W we take

W (x) = w(x;λz/2) = |x − λz/2|γe−x2
, λ ∈ (0, 2),

supposing that we know the three term recurrence relation for this weight, i.e., we
know its recursion coefficients αn and βn for n ≤ N − 1, where N is a sufficiently
large integer.
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n αn rn βn rn

0 9.626084279022080(−3) 1(−13) 3.477033700324542(−1) m.p.
1 9.640398301791682(−3) 2(−13) 5.001855297560273(−1) 3(−15)
2 9.654776418649182(−3) 2(−13) 1.000371888811139 2(−15)
3 9.669219109647301(−3) 1(−13) 1.500559083366045 3(−15)
4 9.683726859890307(−3) 2(−13) 2.000747119686594 8(−15)
5 9.698300159602592(−3) 2(−12) 2.500936004104657 8(−15)
6 9.712939504198404(−3) 1(−12) 3.001125743019025 5(−15)
7 9.727645394352736(−3) 2(−13) 3.501316342896322 1(−14)
8 9.742418336073406(−3) 5(−13) 4.001507810271931 m.p.
9 9.757258840774342(−3) 4(−13) 4.501700151750942 7(−15)

10 9.772167425350108(−3) 4(−13) 5.001893374009104 6(−15)
11 9.787144612251691(−3) 2(−12) 5.502087483793809 2(−15)
12 9.802190929563576(−3) 1(−13) 6.002282487925074 9(−16)
13 9.817306911082116(−3) 2(−12) 6.502478393296560 6(−16)
14 9.832493096395256(−3) 6(−13) 7.002675206876590 5(−15)
15 9.847750030963625(−3) 2(−12) 7.502872935709196 1(−15)
16 9.863078266203000(−3) 2(−13) 8.003071586915185 1(−14)
17 9.878478359568210(−3) 2(−12) 8.503271167693208 1(−14)
18 9.893950874638483(−3) 2(−13) 9.003471685320866 m.p.
19 9.909496381204272(−3) 5(−13) 9.503673147155826 m.p.
20 9.925115455355587(−3) 1(−12) 1.000387556063696(1) 1(−15)
21 9.940808679571879(−3) 2(−12) 1.050407893328549(1) 7(−15)
22 9.956576642813490(−3) 2(−12) 1.100428327270618(1) 2(−15)
23 9.972419940614706(−3) 2(−12) 1.150448858658853(1) 5(−15)
24 9.988339175178452(−3) 3(−12) 1.200469488270798(1) m.p.
25 1.000433495547267(−2) 2(−12) 1.250490216892718(1) 5(−15)
26 1.002040789732838(−2) 1(−12) 1.300511045319721(1) 3(−15)
27 1.003655862353951(−2) 2(−12) 1.350531974355890(1) 6(−15)
28 1.005278776396452(−2) 5(−13) 1.400553004814412(1) 7(−15)
29 1.006909595562978(−2) 5(−12) 1.450574137517713(1) 1(−14)
30 1.008548384283489(−2) 3(−12) 1.500595373297588(1) 8(−15)

...
98 1.143104074095088(−2) 5(−12) 4.902338279503830(1) 1(−15)
99 1.145504513978333(−2) 1(−11) 4.952369359553401(1) 3(−15)

100 1.147920159484019(−2) 3(−12) 5.002400636004121(1) 5(−15)
...

198 1.499584025371824(−2) 8(−12) 9.906948217740761(1) 3(−15)
199 1.505024651932378(−2) 3(−12) 9.957018479396415(1) 2(−15)
200 1.510525109465832(−2) 2(−11) 1.000708951056180(2) 1(−15)

...
297 2.823005489474894(−2) 2(−12) 1.487392040210585(2) 2(−14)
298 2.860594484503885(−2) 2(−11) 1.492439804702057(2) 4(−14)
299 2.899774410369597(−2) 6(−11) 1.497489557956849(2) 1(−13)

Table 3: Three term recurrence coefficients for z = 26, γ = −1/2
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Then, we have∫
R

P (x)w(x) dx =
∫

R

P
(
x +

2 − λ

2
z
) ∣∣∣ x − λz

2

∣∣∣γ e−(x+(2−λ)z/2)2 dx

= e−(1−λ/2)2z2
∫

R

e−(2−λ)zxP
(
x +

2 − λ

2
z
)
W (x) dx

≈ e−(1−λ/2)2z2
N∑

k=1

Ake−(2−λ)zxkP
(
xk +

2 − λ

2
z
)
,

where Ak and xk, k = 1, . . . , N , are weights and nodes of the corresponding N -point
Gauss-Christoffel quadrature formula with respect to the weight function W .

Thus, applying the discretized Stieltjes-Gautschi procedure, we construct
recursion coefficients for the weight w = w(·; z).

Choosing N = 500 and (2 − λ)z = 12, it turns out that to the precision
of the Ak, xk, k = 1, . . . , N , we can construct safely 300 recursion coefficients.
Choosing (2 − λ)z smaller, a bigger number of three term recurrence coefficients
can be constructed.

An example with λz/2 = 20, i.e., z = 26, λ = 40/26, γ = −1/2, is presented
in Table 3. Starting with 500 recursion coefficients for the weight with z = 20, we
can construct to the precision of Ak, xk, k = 1, . . . , N , coefficients for the weight
function with z = 26.

We keep repeating “to the precision of Ak, xk, k = 1, . . . , N ,” since it is
known that QR-algorithm, which is standardly used for the construction of Gaus-
sian quadrature rules given in [2], can return weights Ak, k = 1, . . . , N , which
precision can be significantly harmed (see [5]). There is significant error introduced
in Ak, k = 1, . . . , 500, which reduces precision of the constructed three term recur-
rence coefficients. For example, using modified version of QR-algorithm presented
in [5], the relative error introduced in weights for z = 20, γ = −1/2, is of order
1(−11). This error causes errors in constructed recursion coefficients presented in
Table 3.

The most important thing here is that the construction of coefficients using
this discretized procedure does not depend on γ. Thus, it means that what is said
for γ = −1/2 stays valid for all γ > −1.
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