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SOME IDENTITIES
FOR THE RIEMANN ZETA-FUNCTION

Aleksandar Ivié

Several identities for the RIEMANN zeta-function ((s) are proved. For exam-
ple, if s = o 4+ it and o > 0, then

/: ‘ (1=2'7)¢(s)

S

2

_ T ol-20 o
dt = ~(1-2"7"7)¢(20).

Let as usual ((s) = > o2 n~* (Res > 1) denote the Riemann zeta-function.
The motivation for this note is the quest to evaluate explicitly integrals of | (% +
it)|?*, k € N, weighted by suitable functions. In particular, the problem is to
evaluate in closed form

de
1 k
(5 +°)
When k = 1,2 this may be done, thanks to the identities which will be established
below. The first identity in question is given by

/OO (3—\/gcos(tlog2))k|C(%+it)|2k (k € N).
0

Theorem 1. Let s = o +it. Then for o > 0 we have

o [ |a=2ge

2

- dt = g(l — 21720 ¢(20).

— 00

Since lim,_,1(s — 1){(s) = 1, then setting in (1) o = § we obtain the following

Corollary 1.

2) /OOO (3 — V8cos(tlog2))[¢(3 +it)|2% = 7log2.
1

2000 Mathematics Subject Classification: 11M06
Keywords and Phrases: The Riemann zeta-function, identities, characteristic function.

20



Some identities for the Riemann zeta-function 21

Another identity, which relates directly the square of {(s) to a MELLIN-type
integral, is contained in

Theorem 2. Let x4(x) denote the characteristic function of the set A, and let

(3) Z Z/ X[2m—1,2m) )X[2n 12n)( ) du (x>1).

m=1n=1
Then for o > 0 we have
(4) [ plaa e = (1= 2792s)
1

From (4) we obtain the following

Corollary 2.

T 3- il —I [T e
(5) /0 (3 \/gcostlog2)|c +t|(—|—t2)2 /1 gp()xz.

The integral on the right-hand side of (5) is elementary, but nevertheless its evalu-
ation in closed form is complicated.

Proof of Theorem 1. We start from (see e.g., [1, Chapter 1]) the identity

(6) (1=217)(s) = D= (0>0)
and
M [LERe sl weresn

which follows by the residue theorem on integrating e'** /(0% + 22) over the contour
consisting of [—R, R] and semicircle |z| = R,Smz > 0 and letting R — oo. By
using (6) and (7) it is seen that the left-hand side of (1) becomes
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This holds initially for ¢ > 1, but by analytic continuation it holds for ¢ > 0 as
well.

We shall provide now a second proof of Theorem 1. As in the formulation of
Theorem 2, let x.a(x) denote the characteristic function of the set A, and let the
interval [a,b) denote the set of numbers {z : a < & < b}. Then, for ¢ > 0, we have

/ e ZX[% 1,2n) (%) do = Z/ e de

2n—1

(8)

03|}—‘

i o — 1 (271)_8) — (1 — 21_8) <(8)

S

in view of (6). Now we invoke PARSEVAL’s identity for MELLIN transforms (see e.g.,
[1] and [3]). We need this identity for the modified MELLIN transforms, defined by

F*(s) =m[f(x)] := /100 flz)z—* " da.

The properties of this transform were developed by the author in [2]. In particular,
we need Lemma 3 of [2] which says that

(9) /loo f@)g@) e do= — [ F*(s)G(s)ds

2mi Re s=o

if F*(s) = m[f(x)], G*(s) = m[g(z)], and f(z),g(x) are real-valued, continuous
functions for x > 1, such that

x%"’f(x) € L?(1,00), x%’(’g(x) € L?(1,00).

From (8) and (9) we obtain, for ¢ > 0,

/ E X[2n—1,2n) ' 727 de = —
271 Re s=o

2

(-2l

S

But as x4 (z) = x.a(z), it is easily found that the left-hand side of the above identity
equals

Z Z/ Xi2m—1,2m) () X[2n—1,20) ()2~ 77 da

m=1n=1
o1 /2n—1 20
in view of (6), and (1) follows. |

For the Proof of Theorem 2 we need the following
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Lemma. Let 0 < a <b. If f(zx) is integrable on [a,b], then

< bf(x)x_s dsc)2
(10) aab z/a
= [ [ swr(5) +/ / flu

The identity (10) remains valid if b = oo, provided the integrals in question
converge, in which case the second integral on the right-hand side is to be omitted.

Proof. We write the left-hand side of (10) as the double integral

/ab / o) @) )y

and make the change of variables x = X/Y,y =Y. The Jacobian of this transfor-
mation equals 1/Y, hence the left-hand side of (10) becomes

b2 min(X/a,b)
[ ([ s 57 ) ax
<[ [ e [ fLson(F) Fax

as asserted.

Proof of Theorem 2. We use (8) and the Lemma to obtain that (4) certainly
holds with ¢(z) given by (3), since trivially p(x) < x. To see that it holds for
o > 0, we note that

ay [ Cate(2)<E - /Q/f =2 [ owo(}) T

and use (11) with
= Z X[Qn—l,Qn)(x)
n=1

Note then that the integrand in ¢(z) equals 1/u for 2m — 1 < u < 2m, 2n — 1 <
u < 2n, and otherwise it is zero. This gives the condition
dmn —2m —2n+1 < Jt:<4mn,2 r<n< %(m—i—l), 1<mg< %(\/JE—Fl)

We also have

/. &) e [T ]
fX[mel,Qm) w X[2n—1,2n) 7 O . So 1

x n—1 U
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Therefore

olr) < Y > .

m<yz  x/(dm)<n<(x—142m)/(4m—2) "

m x
< E ;(1+W) < logz.
m<y/x

(12)

This bound shows that the integral in (4) is absolutely convergent for ¢ > 0. Thus
by the principle of analytic continuation this completes the proof of Theorem 2. O

Corollary 2 follows then from (4) and (9) on setting o = 3.

It is interesting to note that the bound in (12) is actually of the correct order
of magnitude. Namely we have

Theorem 3. For any given € > 0 we have

(13) p(z) = tlogz + log (%) + O, (f*i) )

Proof. By (8) and the inversion formula for the MELLIN transform m[f(z)] (see
[2, Lemma 1]) we have, for any ¢ > 0,

1 1— 21—8 22 s
(14) o(x) = ( )¢ (s) ds.

= 5
2718 e s—c S

We shift the line of integration in (14) to ¢ = ¢ — 1/4 with 0 < & < 1/8, which
clearly may be assumed. Since ((0) = —3% and ¢’(0) = —1 log(2n), the residue at
the double pole s = 0 is found to be

1
(15) 1 logz + A, A=—-(0)—log2=1log (g) .

We use the functional equation (see e.g., [1, Chapter 1]) for {(s), namely

() = x(s)¢(L = 5),  x(s) =2°7" ' sin(37s)L(L — s)

x(s) = (?)mt;e“t*i”) : (1 +0(1)> (t=>2).

Let s=¢ — % + it. Then by absolute convergence we have

/2T (1 _ 21—3)2(2(8):1;8 gt

2

with

T S

e} 2T (1 _ 21—3)2 L ¢ %—25 ] )
=1 Z d(n)ns—5/4/ A2 ) pe—gtit (_) ezF(t,n) dt + O(T_E_QE)’
n=1
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where d(n) is the number of divisors of n and
d? 2
F(t,n) := 2t +tlogn — 2tlog(t/2m), Fre (tloga + F(t,n)) = -

Hence by the second derivative test (see [1, Lemma 2.2]) the above series is
oo
< Z d(n)n575/4T72s — 42(3 _ 26)T72€ < T2,
n=1

This shows that

1—-5\2,2 s
/ (1-2 Sg C(s)x ds<<:c5_1/4,
Re s=e—1/4 s

hence (13) follows from (14), (15) and the residue theorem.

In concluding, note that if we write

o(z) = 3logz + A+ ¢1(z),

where A is given by (15) then, for Res = o > 0, (4) yields

A1 *
s> (Z * e +/1 pr(z)a dx) = (1-2177)%¢%(s),

and the above integral converges absolutely, for o > —1/4, in view of (13). Thus
by analytic continuation it follows that, for o > —1/4,

As+ 1 + 52/ o1(x)r " e = (1 — 217%)2¢%(s).
1
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