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THE FRACTAL INTERPOLATION FOR

COUNTABLE SYSTEMS OF DATA

Nicolae-Adrian Secelean

In this paper we will extend the fractal interpolation from the finite case to
the case of countable sets of data. The main result is that, given an countable
system of data in [a, b] × Y , where [a, b] is a real interval and Y a compact
and arcwise connected metric space, there exists a countable iterated function
system whose attractor is the graph of a fractal interpolation function.

1. PRELIMINARIES

We shall present some notions and results used in the sequel (more complete
and rigorous treatments may be found in [4], [2], [5]).

1.1. Hausdorff metric. Let (X,d) be a complete metric space and K(X) be the
class of all compact non-empty subsets of X.

The function h : K(X) ×K(X) −→ R+,

h(A,B) = max{d(A,B),d(B,A)},
where

d(A,B) = sup
x∈A

(
inf
y∈B

d(x, y)
)
, for all A,B ∈ K(X),

is called the Hausdorff metric.
The set K(X) is a complete metric space with respect to this metric h.

1.2. Iterated Function Systems. Let (X,d) be a complete metric space.
A set of contractions (ωn)N

n=1, N ≥ 1, is called an iterated function system
(IFS), according to M. Barnsley [2]. Such a system of maps induces a set function
SN : K(X) −→ K(X),

SN (E) =
N⋃

n=1

ωn(E)
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which is a contraction on K(X) with contraction ratio r ≤ max
1≤n≤N

rn, rn being the

contraction ratio of ωn, n = 1, . . . , N .
According to the Banach contraction principle, there is a unique set AN ∈

K(X) which is invariant with respect to SN , that is

AN = SN (AN ) =
N⋃

n=1

ωn(AN ).

We say that the set AN is the attractor of the IFS (ωn)k
n=1 .

1.3. Countable Iterated Function Systems. Suppose that (X,d) is a compact
metric space.

A sequence of contractions (ωn)n≥1 on X whose contraction ratios are, respec-
tively, rn > 0, such that sup

n
rn < 1 is called a countable iterated function system,

for simplicity CIFS.
Let (ωn)n≥1 be a CIFS.
We define the set function S : K(X)K(X), by

S(E) =
⋃
n≥1

ωn(E),

where the bar means the closure of the corresponding set. Then, S is a contraction
map on (K(X), h) with contraction ratio r ≤ sup

n
rn. According to the Banach

contraction principle, there exists a unique non-empty compact set A ⊂ X which
is invariant for the family (ωn)n≥1 , that is

A = S(A) =
⋃
n≥1

ωn(A).

The set A is called the attractor of CIFS (ωn)n≥1 .
We denote by Ak and, respectively, by Sk the attractor and the contraction

associated to the partial IFS (ωn)k
n=1, for k ≥ 1.

The attractor of CIFS (ωn)n≥1 is A =
⋃
k≥1

Ak = lim
k

Ak, the limit being taken

in (K(X), h).
Hence, the attractor of CIFS (ωn)n≥1 is approximated by the attractors of

the partial IFS (ωn)k
n=1, k ≥ 1.

2. COUNTABLE FRACTAL INTERPOLATION

In this section we will introduce and describe the countable system of
data and the corresponding interpolation functions. Then we will construct the
CIFS associated to that system of data by generalizing a construction of Barnsley
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[1], [2]. We will show that the attractor of that CIFS is the graph of a fractal
interpolation function.

Let (Y,dY ) be a compact and arcwise connected metric space.
Definition 1. A Countable System of Data (abbreviated CSD) is a set of points of
the form

(xn, Fn)n≥0 = {(xn, Fn) ∈ R × Y : n = 0, 1, . . .}
where the sequence (xn)n≥0 is strictly increasing and bounded and (Fn)n≥0 is con-
vergent.

In the sequel (xn, Fn)n≥0 will be a CSD and we denote by a = x0, b = lim
n

xn,

M = lim
n

Fn and by X = [a, b] × Y . Clearly (b,M) ∈ X.

Definition 2. An interpolation function corresponding to this CSD is a continuous
function f : [a, b] → Y such that

f(xn) = Fn for n = 0, 1, . . . .

The points (xn, Fn) ∈ [a, b] × Y, n ≥ 0, are called the interpolation points.
Remarks: 1◦ It is clear that f(b) = M , since f is continuous.

2◦ For each countable system of data there exists an interpolation function.
For example, we can construct the interpolation function as follows: by a
standard topological fact, for each n ≥ 1, there exists a continuous map
fn : [xn−1, xn] → Y such that fn(xn−1) = Fn−1 and fn(xn) = Fn. Then put

f(x) =

{
fn(x), for x ∈ [xn−1, xn), n = 1, 2, . . . ;

M, for x = b.

Define a metric δ on X by

(1) δ
(
(y1, z1), (y2, z2)

)
=|y1 − y2 | +θ dY (z1, z2),

for all points (y1, z1), (y2, z2) ∈ X, where θ is a positive real number to be specified
below. It is obvious that δ is a metric on X. Also, note that the metric space (X, δ)
is compact.

Let c and s be real numbers, with 0 ≤ s < 1 and c > 0. For each n = 1, 2, . . .,
let ϕn : X → Y be a function which satisfies the inequalities

(2) dY

(
ϕn(α, y), ϕn(β, y)

) ≤ c |α − β | for any α, β ∈ [a, b] and y ∈ Y,

and

(3) dY

(
ϕn(α, y), ϕn(α, z)

) ≤ sdY (y, z) for any α ∈ [a, b] and y, z ∈ Y.

Define a transformation ωn : X → X by

ωn(x, y) =
(
ln(x), ϕn(x, y)

)
, for all (x, y) ∈ X, n = 1, 2, . . . ,
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where ln : [a, b] → [xn−1, xn] is the invertible transformation ln(x) = anx + en,

(4) an =
xn − xn−1

b − a
and en =

bxn−1 − axn

b − a
.

Notice that

(5) an > 0 for all n ≥ 1 and sup
n≥1

an < 1.

Theorem 1. Let the family (ωn)n≥1 be defined as above. Assume that there are
real constants c and s such that c > 0, 0 ≤ s < 1 and conditions (2) and (3) are
fullfield. Let the constant θ in the definition of the metric δ in equation (1) be
defined by

θ =
inf
n≥1

(1 − an)

2c
.

Then (ωn)n≥1 is a CIFS with respect to the metric δ. In particular, there
exists a unique nonempty compact set A ⊂ X such that

A =
⋃
n≥1

ωn(A).

Proof. We will show that the transformations ωn, n ≥ 1, are contraction maps on
(X, δ) having the supremum of contraction ratios less than 1.

Let n ≥ 1 and (y1, z1), (y2, z2) ∈ X. Using (2), (3), (5) we have

δ
(
ωn(y1, z1), ωn(y2, z2)

)
= δ

((
any1 + en, ϕn(y1, z1)

)
,
(
any2 + en, ϕn(y2, z2)

))
= an |y1 − y2 | +θdY (ϕn(y1, z1), ϕn(y2, z2))
≤ (an + θc) |y1 − y2 | +θsdY (z1, z2) ≤ max{α, s}δ((y1, z1), (y2, z2)

)
,

where α = sup
n≥1

an + θc < 1.

Thus (ωn)n≥1 is a CIFS on (X, δ). Then there exists a nonempty compact
subset of (X, δ) which is the attractor of (ωn)n≥1 .

We now constrain the CIFS (ωn)n≥1 on X, defined above, to ensure that the
attractor includes the CSD. We assume that

(6) ϕn(x0, F0) = Fn−1 and ϕn(b,M) = Fn for n = 1, 2, . . . .

Then it follows that

(7) ωn(x0, F0) = (xn−1, Fn−1) and ωn(b,M) = (xn, Fn) for n = 1, 2, . . . .
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Definition 3. We say that the CIFS (ωn)n≥1 defined above is associated with the
CSD (xn, Fn)n≥0.
Theorem 2. Let (ωn)n≥1 denote the CIFS associated with the CSD (xn, Fn)n≥0.
In particular, assume that there are real constants c and s such that 0 ≤ s < 1,
c > 0, and conditions (2), (3) and (6) are fullfied. Then there exists an interpolation
function f corresponding to the CSD such that the graph of f is the attractor of
CIFS (ωn)n≥1 . That is

A = {(x, f(x)
)

: x ∈ [a, b]}.
Proof. Let F denote the set of continuous function f : [a, b] → Y such that

f(a) = F0 and f(b) = M . The set F is non empty (see the above remark).
We consider the uniform metric d on F ,

d(f, g) = sup
x∈[a,b]

dY

(
f(x), g(x)

)
, for all f, g ∈ F .

It is a standard fact that (F ,d) is a complete metric space.
Define a mapping T : F → F by

(Tf)(x) = ϕn

(
l−1
n (x), f

(
l−1
n (x)

))
for x ∈ [xn−1, xn), n = 1, 2, . . . ,

and
(Tf)(b) = M

where, for each n = 1, 2, . . ., ln : [a, b] → [xn−1, xn] is the invertible transformation
ln(x) = anx + en defined as above.

Notice that, from (4)

(8) l−1
n (xn−1) = x0, l−1

n (xn) = b, ∀n = 1, 2, . . . .

To verify that T (F) ⊂ F , let f ∈ F . Then, using (6), (8),

(Tf)(a) = (Tf)(x0) = ϕ1

(
l−1
1 (x0), f

(
l−1
1 (x0)

))
= ϕ1

(
x0, f(x0)

)
= ϕ1(x0, F0) = F0

and, by definition,
(Tf)(b) = M.

The continuity of application Tf on the intervals [xn−1, xn), n = 1, 2, . . ., is
obvious (because the applications ϕn, n ≥ 1, are continuous, by (2) and (3). Then
it remains to prove that Tf is continuous at each of the points x1, x2, . . . and that
Tf is left continuous in b.

Let n ≥ 1. We have

lim
x↘xn

(Tf)(x) = ϕn+1

(
l−1
n+1(xn), f

(
l−1
n+1(xn)

))
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= ϕn+1

(
(x0), f(x0)

)
= Fn,

lim
x↗xn

(Tf)(x) = ϕn

(
l−1
n (xn), f

(
l−1
n (xn)

))
= ϕn

(
b, f(b)

)
= Fn = (Tf)(xn).

Next, by using the continuity of Tf on [a, b), the fact that xn ↗ b and the
definition of Tf , we deduce that lim

x↗b
(Tf)(x) = M . We conclude that T does indeed

map F into F .
Now, we will show that T is a contraction mapping on the metric space (F ,d).

Let f, g ∈ F . Let x ∈ [a, b) and n ≥ 1 such that x ∈ [xn−1, xn].
Then

dY ((Tf)(x), (Tg)(x)) = dY

(
ϕn

(
l−1
n (x), f

(
l−1
n (x)

))
, ϕn

(
l−1
n (x), g

(
l−1
n (x)

)))

≤ s dY

(
f
(
l−1
n (x)

)
, g

(
l−1
n (x)

)) ≤ s d(f, g).

Since the above relations are clearly verified for x = b, it follows that

d(Tf, Tg) ≤ s d(f, g).

The Contraction Mapping Theorem implies that T possesses a unique fixed
point in F . That is there exists a function f ∈ F such that (Tf)(x) = f(x), for all
x ∈ [a, b].

Taking into account the definition of T and the relations (8), it is easy to
verify that if f0 ∈ F , then Tf0 is an interpolation function for CSD (xn, Fn)n≥0.
Particularly f is an interpolation function for CSD (xn, Fn)n≥0.

Let G denote the graph of f . We will prove the equality

G =
⋃
n≥1

ωn(G)

by proving both inclusions.
Let x ∈ [a, b] and n ≥ 1. Then, by (4), anx + en ∈ [xn−1, xn], hence

ωn

(
x, f(x)

)
=

(
anx + en, ϕn(x, f(x))

)
=

(
anx + en, (Tf)(anx + en)

)
=

(
anx + en, f(anx + en)

) ∈ G.

Because G is closed set and ωn(G) ⊂ G one obtains:
⋃

n≥1

ωn(G) ⊂ G.

Conversely, let
(
x, f(x)

) ∈ G. Suppose that x ∈ [a, b) and let n ≥ 1 such that
x ∈ [xn−1, xn]. Then

(
x, f(x)

)
= ωn

(
l−1
n (x), f

(
l−1
n (x)

)) ∈ ωn(G).
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Next, since (xn, f(xn)) ∈ ωn(G) for all n ≥ 1, it follows that(
b, f(b)

)
= lim

n

(
xn, f(xn)

) ∈
⋃
n≥1

ωn(G).

By uniqueness of the attractor of an CIFS, we deduce that A = G. This
completes the proof.

Definition 4. The application f defined in the above theorem is called the fractal
interpolation function associated with the CSD (xn, Fn)n≥0.

The following theorems give two approximation methods for the graph of the
fractal interpolation function given in Theorem 2.
Theorem 3. In the conditions of Theorem 2, using the same notations, we define
as usually S : K(X) −→ K(X), by S(E) =

⋃
n≥1

ωn(E).

If f0 is a map in F whose graph is A0, then the graph of Tf0 is S(A0).
Moreover, if Ap denote the graph of the interpolation function T pf0 (p =

1, 2, . . .), then the sequence (Ap)p converges with respect to the Hausdorff metric to
the attractor of CIFS (ωn)n≥1, hence to the graph of a fractal interpolation function
(we have denoted T 1 = T, T p+1 = T ◦ T p, p ≥ 1).
Proof. We will prove the equality

(9) S(A0) =
⋃
n≥1

ωn(A0) = {(t, Tf0(t)) : t ∈ [a, b]}

by proving both inclusions.
Let y ∈ S(A0). First assume that y ∈

⋃
n≥1

ωn(A0). Then there exists n ≥ 1

such that y ∈ ωn(A0), hence there exists x ∈ [a, b] such that

y = ωn

(
x, f0(x)

)
=

(
anx + en, ϕn

(
x, f0(x)

))
.

By using (4), we have

(10) xn−1 = anx0 + en ≤ anx + en ≤ anb + en = xn.

Next, for t = anx + en, one has t ∈ [a, b], y = (t, Tf0(t)).
Now, if

y ∈
⋃
n≥1

ωn(A0) and yk ∈
⋃
n≥1

ωn(A0), yk
k→ y,

there is tk ∈ [a, b], such that yk = (tk, T f0(tk)), for all k = 1, 2, . . .. It follows that
y = lim

k
(tk, T f0(tk)) belongs to the graph of Tf0.

Conversely, for y =
(
t, Tf0(t)

)
, t ∈ [a, b), there is n ≥ 1 such that xn−1 ≤ t ≤

xn. Then (see (10)) there exists x ∈ [a, b] so that t = anx + en and hence

y = ωn

(
x, f0(x)

) ∈ S(A0).
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Also y =
(
b, Tf0(b)

)
= lim

x↗b
(x, Tf0(x)) ∈ S(A0).

Now, iterating (9), it follows Sp(A0) = Ap. Since (Sp(A0))p converges with
respect to the Hausdorff metric to the attractor of CIFS, by Theorem 2 it follows
the last assertion.

Theorem 4. In the above conditions, the graph of the fractal interpolation func-
tion corresponding to the CIFS (ωn)n≥1 associated with CSD is approximated with
respect to the Hausdorff metric by the attractors of the partial IFS (ωn)k

n=1, k ≥ 1.
Proof. The assertion follows immediately from Theorem 2 and the section 1.3 (see
[5, Cor. 2.2]).

Particular case: the countable system of data in R
2

We consider now the case when Y is a compact nonempty subset of R. Thus
a CSD on X = [a, b] × Y is a set of points of the form

(xn, Fn)n≥0 = {(xn, Fn) ∈ R
2 : n = 0, 1, 2, . . .},

where a = x0 < x1 < . . ., b = lim
n

xn, (Fn)n≥0 is a convergent sequence in Y and
M = lim

n
Fn.

The maps ϕn, n ≥ 1, in the construction of (ωn)n≥1 can be the affine
transformations:

ϕn(x, y) = cnx + dny + gn, cn, dn, gn ∈ R, n = 1, 2, . . . .

The relations (7) will be

(11)

anx0 + en = xn−1,

anb + en = xn,

cnx0 + dnF0 + gn = Fn−1,

cnb + dnM + gn = Fn.

It follows that there is effectively one free parameter in each transformation.
For the sequel we choose this parameter to be dn (dn is called the vertical scaling
factor in the transformation ωn).

Thus, if dn is any real number, we obtain from (11), using the above notations,

(12)

an =
xn − xn−1

b − a
,

en =
bxn−1 − x0xn

b − a
,

cn =
Fn − Fn−1

b − a
− dn

M − F0

b − a
,

gn =
bFn−1 − x0Fn

b − a
− dn

bF0 − x0M

b − a
.
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It follows that, if we assume that the vertical scaling factor dn satisfies the
conditions dn ≥ 0, for n = 1, 2, . . ., and sup

n≥0
dn < 1, then there is a metric δ on X,

equivalent to the Euclidean metric d, such that (ωn)n≥1 is a CIFS on the compact
metric space (X, δ).
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