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ON THE SEIDEL EIGENVECTORS

OF A GRAPH

Mirko Lepović

Let G be a simple graph of order n and let µ1 > µ2 > . . . > µk and
µ∗

1 > µ∗
2 > . . . > µ∗

k be its main eigenvalues with respect to the ordinary
adjacency matrix A = A(G) and the Seidel adjacency matrix A∗ = A∗(G),
respectively. Let nm = nβ2

m and n∗
m = n(β∗

m)2 for m = 1, 2, . . . , k,
where βm and β∗

m are the main angles of µm and µ∗
m, respectively. Be-

sides, let (x
(m)
1 , x

(m)
2 , . . . , x

(m)
n ) and (s

(m)
1 , s

(m)
2 , . . . , s

(m)
n ) denote the main

eigenvectors of µm and µ∗
m, respectively, so that

∑n
i=1 x

(m)
i =

√
nm and∑n

i=1 s
(m)
i =

√
n∗

m. In this work we show that

x
(m)
i =

( k∑
j=1

√
n∗

j s
(j)
i

µ∗
j + 2µm + 1

)√
nm and s

(m)
i =

( k∑
j=1

√
nj x

(j)
i

µ∗
m + 2µj + 1

)√
n∗

m

for i = 1, 2, . . . , n and m = 1, 2, . . . , k.

In this paper we consider only simple graphs. The spectrum of a simple graph
G of order n consists of the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn of its (0,1) adjacency
matrix A = A(G) and is denoted by σ(G). The Seidel spectrum of G consists of
the eigenvalues λ∗

1 ≥ λ∗
2 ≥ . . . ≥ λ∗

n of its (0,−1, 1) adjacency matrix A∗ = A∗(G)
and is denoted by σ∗(G). Let PG(λ) = |λI −A| and P ∗

G(λ) = |λI −A∗| denote the
characteristic polynomial and the Seidel characteristic polynomial, respectively.

We say that an eigenvalue µ of G is main if and only if 〈j,Pj〉 = n cos2 α > 0,
where j is the main vector (with coordinates equal to 1) and P is the orthogonal
projection of the space R

n onto the eigenspace EA(µ). The quantity β = | cos α|
is called the main angle of µ. Similarly, we say that µ∗ ∈ σ∗(G) is the Seidel
main eigenvalue if and only if 〈j,P∗j〉 = n cos2 α∗ > 0, where P∗ is the orthogonal
projection of the space R

n onto the eigenspace EA∗(µ∗). The quantity β∗ = | cos α∗|
is called the Seidel main angle of µ∗.

2000 Mathematics Subject Classification: 05C50
Keywords and Phrases: Graph, eigenvalue, main eigenvalue, eigenvector.

4



On the Seidel eigenvectors of a graph 5

Further, let Ak = [a(k)
ij ] for any non-negative integer k. The number Nk of all

walks of length k in G equals sumAk, where sumM is the sum of all elements in
a matrix M . According to [3], [4], the generating function HG(t) of the numbers
Nk of length k in the graph G is defined by HG(t) =

∑+∞
k=0 Nktk. The function

H∗
G(t) =

∑+∞
k=0 N∗

k tk, where N∗
k = sum (A∗)k and (A∗)k = [(a∗

ij)
(k)], is called the

Seidel generating function [5].
In [1] was proved that the graph G and its complement G have the same

number of main eigenvalues. We also know that |M(G)| = |M∗(G)|, where M(G)
and M∗(G) denote the sets of all main and the Seidel main eigenvalues of G,
respectively (see [2]).

Using a procedure which is applied in [3,p. 45] for getting HG(t), we can
easily see that

(1) H∗
G

( 1
λ

)
= λ


 (−1)n2nPG

(
− λ + 1

2

)
P ∗

G(λ)
− 1


 .

Besides, using the spectral decomposition of A∗, it is not difficult to show
that H∗

G(t) may be represented in the form

(2) H∗
G

( 1
λ

)
=

n∗
1λ

λ − µ∗
1

+
n∗

2λ

λ − µ∗
2

+ . . . +
n∗

kλ

λ − µ∗
k

,

where n∗
i = n(β∗

i )2 and n∗
1 + n∗

2 + . . . + n∗
k = n; µ∗

i and β∗
i (i = 1, 2, . . . , k) stand

for the Seidel main eigenvalues and Seidel main angles of G, respectively. Using
(1) and (2), we obtain the following relation

(3)
k∏

m=1

(
λ + 2µm + 1

)
=

( k∏
m=1

(
λ − µ∗

m

))(
1 +

k∑
m=1

n∗
m

λ − µ∗
m

)
,

where µm ∈ M(G) for m = 1, 2, . . . , k. We note that if λ ∈ σ(G) � M(G) then
necessarily −2λ − 1 ∈ σ∗(G) � M∗(G). Consequently, using (3) it follows that

(4)
k∑

m=1

n∗
m

µ∗
m + 2µi + 1

= 1 (i = 1, 2, . . . , k).

Theorem 1. Let G be a graph of order n with two Seidel main eigenvalues µ∗
1

and µ∗
2. Then

(5) µ1,2 =
n − 2 − µ∗

1 − µ∗
2

4
±

√(
µ∗

1 − µ∗
2 + n

)2 − 4n∗
1

(
µ∗

1 − µ∗
2

)
4

.

Besides, we have

(6) n1,2 =
n

2
± n2 +

(
n − 2n∗

1

)(
µ∗

1 − µ∗
2

)
2
√(

µ∗
1 − µ∗

2 + n
)2 − 4n∗

1

(
µ∗

1 − µ∗
2

) ,
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where ni = nβ 2
i for i = 1, 2; β1 and β2 denote the main angles of µ1 and µ2,

respectively.

Proof. Using (3) by a straight-forward calculation we get (i) 2µ1 + 2µ2 = n− 2−
µ∗

1 −µ∗
2; and (ii) 4µ1µ2 = µ∗

1µ
∗
2 − (n∗

2 − 1)µ∗
1 − (n∗

1 − 1)µ∗
2 − (n− 1), which provides

relation (5).
In order to derive relation (6) first recall that A∗ = K−2A and e(G)+e(G) =(n

2

)
, where K is the adjacency matrix of the complete graph Kn and e(G) is the

number of edges of G. Making use of (i) 2(n1µ1 + n2µ2) + (n∗
1µ

∗
1 + n∗

2µ
∗
2) = 2

(
n
2

)
;

and (ii) n1 + n2 = n, we easily obtain (6).

Further, according to [3, p. 50],

(7) PG(λ) =
(−1)n

2n

P ∗
G(− 2λ − 1)

1 +
1
2λ

HG

( 1
λ

) .

Setting ni = nβ 2
i where βi is the main angle of µi for i = 1, 2, . . . , k, note

that HG(t) can be displayed in the form

HG

( 1
λ

)
=

n1λ

λ − µ1
+

n2λ

λ − µ2
+ . . . +

nkλ

λ − µk
.

Combining (7) and the last relation, it is not difficult to see that the following
relation is satisfied

(8)
k∏

m=1

(
λ − µ∗

m

)
=

( k∏
m=1

(
λ + 2µm + 1

)) (
1 −

k∑
m=1

nm

λ + 2µm + 1

)
,

from which we easily obtain

(9)
k∑

m=1

nm

µ∗
i + 2µm + 1

= 1 (i = 1, 2, . . . , k) .

Theorem 2. Let G be a graph of order n with two main eigenvalues µ1 and µ2.
Then

(10) µ∗
1,2 =

n − 2 − 2µ1 − 2µ2

2
±

√(
2µ1 − 2µ2 + n

)2 − 8n1

(
µ1 − µ2

)
2

.

Besides, we have

(11) n∗
1,2 =

n

2
± n2 + 2

(
n − 2n1

)(
µ1 − µ2

)
2
√(

2µ1 − 2µ2 + n
)2 − 8n1

(
µ1 − µ2

) ,

where n∗
1 = n(β∗

1)2 and n∗
2 = n(β∗

2)2.
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Proof. Using (8) by an easy calculation we have (i) µ∗
1 + µ∗

2 = n − 2 − 2µ1 − 2µ2;
and (ii) µ∗

1µ
∗
2 = 4µ1µ2−2(n2−1)µ1−2(n1−1)µ2− (n−1), which provides relation

(10).

Next, making use of (i) (n∗
1µ

∗
1 + n∗

2µ
∗
2) + 2(n1µ1 + n2µ2) = 2

(n
2

)
and (ii)

n∗
1 + n∗

2 = n, we arrive at (11), which completes the proof.

Let (x(m)
1 , x

(m)
2 , . . . , x

(m)
n ) and (s(m)

1 , s
(m)
2 , . . . , s

(m)
n ) denote the main eigenvec-

tors of µm and µ∗
m, respectively, so that

∑n
i=1 x

(m)
i =

√
nm and

∑n
i=1 s

(m)
i =

√
n∗

m.
Let deg(i) denotes the degree of the vertex i. With this notation, we have recently
proved the following result:

Proposition 1 (Lepović [6]). Let µ1, µ2, . . . , µk ∈ M(G). Then:

(1◦)
√

n1 x
(1)
i +

√
n2 x

(2)
i + . . . +

√
nk x

(k)
i = 1;

(2◦)
√

n1 x
(1)
i µ1 +

√
n2 x

(2)
i µ2 + . . . +

√
nk x

(k)
i µk = deg(i),

for any i = 1, 2, . . . , n.

Proposition 2. Let µ∗
1, µ

∗
2, . . . , µ

∗
k ∈ M∗(G). Then:

(1◦)
√

n∗
1 s

(1)
i +

√
n∗

2 s
(2)
i + . . . +

√
n∗

k s
(k)
i = 1;

(2◦)
√

n∗
1 s

(1)
i µ∗

1 +
√

n∗
2 s

(2)
i µ∗

2 + . . . +
√

n∗
k s

(k)
i µ∗

k = (n − 1) − 2 deg(i) ,

for any i = 1, 2, . . . , n.

Proof. Let M = {m |λ∗
m ∈ σ∗(G) � M∗(G)}. Then for any non-negative integer

�, we have
(A∗)� =

k∑
m=1

X∗
m (µ∗

m)� +
∑
m∈M

Ym (λ∗
m)� ,

where X∗
m = X∗

m[s(m)
ij ] and Ym = Ym[ y(m)

ij ] with z
(m)
ij = z

(m)
i z

(m)
j . Of course, here

{ (y(m)
1 , y

(m)
2 , . . . , y

(m)
n )

∣∣ m ∈ M } represents a complete set of mutually orthogonal
normalized eigenvectors which are related to {λ∗

m ∈ σ∗(G)�M∗(G)
∣∣ m ∈ M } such

that y
(m)
1 + y

(m)
2 + . . . + y

(m)
n = 0. Using the last relation we obtain

n∑
j=1

(a∗
ij)

(�) =
k∑

m=1

( n∑
j=1

s
(m)
j

)
s
(m)
i (µ∗

m)� +
∑
m∈M

( n∑
j=1

y
(m)
j

)
y
(m)
i (λ∗

m)� ,

which provides the proof.

Proposition 3. Let G be a connected or disconnected graph of order n with two
Seidel main eigenvalues µ∗

1 and µ∗
2. Then

s
(1)
i =

(
(n − 1) − 2 deg(i)

) − µ∗
2√

n∗
1 (µ∗

1 − µ∗
2)

and s
(2)
i =

µ∗
1 −

(
(n − 1) − 2 deg(i)

)
√

n∗
2 (µ∗

1 − µ∗
2)

for i = 1, 2, . . . , n.
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Proof. Combing relations Proposition 2 (1◦) and (2◦), by a straight-forward cal-
culation we obtain the statement.

Remark 1. Using Proposition 1 (1◦) and (2◦), we easily find that (i) x
(1)
i =

deg(i) − µ2√
n1 (µ1 − µ2)

and (ii) x
(2)
i =

µ1 − deg(i)√
n2 (µ1 − µ2)

for i = 1, 2, . . . , n.

Theorem 3. Let G be a connected or disconnected graph of order n with k main
eigenvalues. Let (x(m)

1 , x
(m)
2 , . . . , x

(m)
n ) and (s(m)

1 , s
(m)
2 , . . . , s

(m)
n ) denote the main

eigenvectors of µm and µ∗
m, respectively, so that

n∑
i=1

x
(m)
i =

√
nm and

n∑
i=1

s
(m)
i =

√
n∗

m. Then

(12) x
(m)
i =

( k∑
j=1

√
n∗

j s
(j)
i

µ∗
j + 2µm + 1

)√
nm and s

(m)
i =

( k∑
j=1

√
nj x

(j)
i

µ∗
m + 2µj + 1

)√
n∗

m

for i = 1, 2, . . . , n and m = 1, 2, . . . , k.

Proof. We shall first show that the right-hand side of (12) is true for any i =
1, 2, . . . , n and m = 1, 2, . . . , k. In order to prove that (s(m)

1 , s
(m)
2 , . . . , s

(m)
n ) is

the eigenvector of the main eigenvalue µ∗
m, it is sufficient to demonstrate that its

coordinates s
(m)
i satisfy the following system of homogeneous linear equations

µ∗
m s

(m)
i =

n∑
�=1

( k∑
j=1

[
(1 − 2ai�) − a

(0)
i�

] √
nj x

(j)
�

µ∗
m + 2µj + 1

)√
n∗

m,

understanding that a
(0)
ij = δij , where δij is the Kronecker delta symbol. Indeed,

using (9) and the equation µj x
(j)
i =

n∑
�=1

ai� x
(j)
� , the last relation is transformed

into

µ∗
m s

(m)
i =

√
n∗

m −
( k∑

j=1

√
nj x

(j)
i (2µj + 1)

µ∗
m + 2µj + 1

)√
n∗

m ,

from which we obtain the assertion using Proposition 1 (1◦). In a quite analogous
manner, making use of (4) and Proposition 2 (1◦), we find that the left-hand side
of (12) is also true for any i = 1, 2, . . . , n and m = 1, 2, . . . , k.

Using (12) and keeping in mind that {(x(m)
1 , x

(m)
2 , . . . , x

(m)
n )

∣∣ m = 1, 2, . . . , k}
and {(s(m)

1 , s
(m)
2 , . . . , s

(m)
n )

∣∣ m = 1, 2, . . . , k} are the complete systems of mutually
orthogonal normalized eigenvectors, we arrive at

Proposition 4. Let G be a graph with k main eigenvalues. Then for any m =
1, 2, . . . , k we have

1
nm

=
k∑

i=1

n∗
i(

µ∗
i + 2µm + 1

)2 and
1

n∗
m

=
k∑

i=1

ni(
µ∗

m + 2µi + 1
)2 .
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Further, for any λ∗ ∈ σ∗(G) we have that −λ∗ ∈ σ(G). Since EA∗(λ∗) =
EA

∗ (−λ∗), we obtain implicitly M∗(G) = −M∗(G), where −M∗(G) = {λ∗ | −
λ∗ ∈ M∗(G)}. Consequently, according to (2), we get

(13) HG
∗
( 1

λ

)
=

n∗
1λ

λ + µ∗
1

+
n∗

2λ

λ + µ∗
2

+ . . . +
n∗

kλ

λ + µ∗
k

.

Next, let (x (m)
1 , x

(m)
2 , . . . , x

(m)
n ) denote the main eigenvector of µm ∈ M(G)

such that
∑n

i=1 x
(m)
i =

√
nm, where nm = nβ

2

m and βm is the main angle of µm.
Using the last relation, we obtain from Theorem 3 that

x
(m)
i =

( k∑
j=1

√
n∗

j s
(j)
i

−µ∗
j + 2µm + 1

)√
nm and s

(m)
i =

( k∑
j=1

√
nj x

(j)
i

−µ∗
m + 2µj + 1

)√
n∗

m,

and from Proposition 4 that

1
nm

=
k∑

i=1

n∗
i(− µ∗

i + 2µm + 1
)2 and

1
n∗

m

=
k∑

i=1

ni(− µ∗
m + 2µi + 1

)2 .

We note that if G is a self-complementary graph then its Seidel main spec-
trum is symmetric with respect to the zero point. Moreover, according to (2) and
(13) it follows that nµ∗ = n−µ∗ for any µ∗,−µ∗ ∈ M∗(G), by understanding
that nµ∗ = nβ 2

µ∗ and βµ∗ is the main angle of µ∗. In particular, if G is a self-
complementary graph of order n with two Seidel main eigenvalues µ∗ and −µ∗, we

obtain implicitly from Proposition 3 that ±µ∗ = ±
√

1
n

n∑
i=1

(
(n − 1) − 2 deg(i)

)2.

We also note that in this case nµ∗ = n/2. Thus, if G is a self-complementary graph
of order n with two main eigenvalues µ1 and µ2, we find from (5) and (6) that

µ1,2 =
n − 2

4
±

√
n2 + 4(µ∗)2

4
and n1,2 =

n

2
± n2

2
√

n2 + 4(µ∗)2
,

respectively.
Finally, in order to demonstrate some results presented in this paper we shall

consider the following graph: G = K2n+1 ∪ 3(n + 1)K1, where nK1 denotes a
graph with n isolated vertices. We can see that K2n+1 ∪ 3(n + 1)K1 is integral1 in
the ordinary and the Seidel sense for any non-negative integer n. Namely, σ(G)
and σ∗(G) have two main eigenvalues µ1 = 2n, µ2 = 0 and two Seidel main
eigenvalues µ∗

1 = 4n + 3, µ∗
2 = − (3n + 1), respectively. Further, we have that (i)

n1 = 2n + 1 and n2 = 3(n + 1); (ii) n∗
1 =

32n2 + 48n + 16
7n + 4

and n∗
2 =

3n2

7n + 4
;

1A graph is called integral if its spectrum consists entirely of integers. We notice from (8) that
if G is integral then G is integral in the Seidel sense if and only if the Seidel main spectrum
M∗(G) contains integral values.
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(iii) σ(G) = {2n, 03(n+1),− 12n} and σ∗(G) = {4n + 3, 12n,− 13n+2,− (3n + 1)},
where the multiplicity of a multiple eigenvalue is given in the form of an exponent.

Besides, we find that (iv) x
(1)
i =

1√
2n + 1

if i ∈ V (K2n+1) and x
(1)
i = 0, otherwise,

where V (G) is the vertex set of G; (v) x
(2)
i = 0 if i ∈ V (K2n+1) and x

(2)
i =

1√
3(n + 1)

, otherwise; (vi) s
(1)
i =

√
n + 1√

(2n + 1)(7n + 4)
if i ∈ V (K2n+1) and s

(1)
i =

√
2n + 1√

(n + 1)(7n + 4)
, otherwise; and (vii) s

(2)
i =

√
3√

7n + 4
if i ∈ V (K2n+1) and s

(2)
i =

−√
3

3
√

7n + 4
, otherwise.
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