ON THE SEIDEL EIGENVECTORS OF A GRAPH

Mirko Lepović

Let G be a simple graph of order n and let $\mu_{1}>\mu_{2}>\ldots>\mu_{k}$ and $\mu_{1}^{*}>\mu_{2}^{*}>\ldots>\mu_{k}^{*}$ be its main eigenvalues with respect to the ordinary adjacency matrix $A=A(G)$ and the SEIDEL adjacency matrix $A^{*}=A^{*}(G)$, respectively. Let $n_{m}=n \beta_{m}^{2}$ and $n_{m}^{*}=n\left(\beta_{m}^{*}\right)^{2}$ for $m=1,2, \ldots, k$, where β_{m} and β_{m}^{*} are the main angles of μ_{m} and μ_{m}^{*}, respectively. Besides, let $\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right)$ and $\left(s_{1}^{(m)}, s_{2}^{(m)}, \ldots, s_{n}^{(m)}\right)$ denote the main eigenvectors of μ_{m} and μ_{m}^{*}, respectively, so that $\sum_{i=1}^{n} x_{i}^{(m)}=\sqrt{n_{m}}$ and $\sum_{i=1}^{n} s_{i}^{(m)}=\sqrt{n_{m}^{*}}$. In this work we show that
$x_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}^{*}} s_{i}^{(j)}}{\mu_{j}^{*}+2 \mu_{m}+1}\right) \sqrt{n_{m}} \quad$ and $\quad s_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}} x_{i}^{(j)}}{\mu_{m}^{*}+2 \mu_{j}+1}\right) \sqrt{n_{m}^{*}}$
for $i=1,2, \ldots, n$ and $m=1,2, \ldots, k$.

In this paper we consider only simple graphs. The spectrum of a simple graph G of order n consists of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ of its (0,1) adjacency matrix $A=A(G)$ and is denoted by $\sigma(G)$. The Seidel spectrum of G consists of the eigenvalues $\lambda_{1}^{*} \geq \lambda_{2}^{*} \geq \ldots \geq \lambda_{n}^{*}$ of its $(0,-1,1)$ adjacency matrix $A^{*}=A^{*}(G)$ and is denoted by $\sigma^{*}(G)$. Let $P_{G}(\lambda)=|\lambda I-A|$ and $P_{G}^{*}(\lambda)=\left|\lambda I-A^{*}\right|$ denote the characteristic polynomial and the Seidel characteristic polynomial, respectively.

We say that an eigenvalue μ of G is main if and only if $\langle\mathbf{j}, \mathbf{P j}\rangle=n \cos ^{2} \alpha>0$, where \mathbf{j} is the main vector (with coordinates equal to 1) and \mathbf{P} is the orthogonal projection of the space \mathbb{R}^{n} onto the eigenspace $\mathcal{E}_{A}(\mu)$. The quantity $\beta=|\cos \alpha|$ is called the main angle of μ. Similarly, we say that $\mu^{*} \in \sigma^{*}(G)$ is the Seidel main eigenvalue if and only if $\left\langle\mathbf{j}, \mathbf{P}^{*} \mathbf{j}\right\rangle=n \cos ^{2} \alpha^{*}>0$, where \mathbf{P}^{*} is the orthogonal projection of the space \mathbb{R}^{n} onto the eigenspace $\mathcal{E}_{A^{*}}\left(\mu^{*}\right)$. The quantity $\beta^{*}=\left|\cos \alpha^{*}\right|$ is called the Seidel main angle of μ^{*}.

Further, let $A^{k}=\left[a_{i j}^{(k)}\right]$ for any non-negative integer k. The number N_{k} of all walks of length k in G equals sum A^{k}, where $\operatorname{sum} M$ is the sum of all elements in a matrix M. According to [3], [4], the generating function $H_{G}(t)$ of the numbers N_{k} of length k in the graph G is defined by $H_{G}(t)=\sum_{k=0}^{+\infty} N_{k} t^{k}$. The function $H_{G}^{*}(t)=\sum_{k=0}^{+\infty} N_{k}^{*} t^{k}$, where $N_{k}^{*}=\operatorname{sum}\left(A^{*}\right)^{k}$ and $\left(A^{*}\right)^{k}=\left[\left(a_{i j}^{*}\right)^{(k)}\right]$, is called the SEIDEL generating function [5].

In [1] was proved that the graph G and its complement \bar{G} have the same number of main eigenvalues. We also know that $|\mathcal{M}(G)|=\left|\mathcal{M}^{*}(G)\right|$, where $\mathcal{M}(G)$ and $\mathcal{M}^{*}(G)$ denote the sets of all main and the SEIDEL main eigenvalues of G, respectively (see [2]).

Using a procedure which is applied in [3,p. 45] for getting $H_{G}(t)$, we can easily see that

$$
\begin{equation*}
H_{G}^{*}\left(\frac{1}{\lambda}\right)=\lambda\left[\frac{(-1)^{n} 2^{n} P_{G}\left(-\frac{\lambda+1}{2}\right)}{P_{G}^{*}(\lambda)}-1\right] \tag{1}
\end{equation*}
$$

Besides, using the spectral decomposition of A^{*}, it is not difficult to show that $H_{G}^{*}(t)$ may be represented in the form

$$
\begin{equation*}
H_{G}^{*}\left(\frac{1}{\lambda}\right)=\frac{n_{1}^{*} \lambda}{\lambda-\mu_{1}^{*}}+\frac{n_{2}^{*} \lambda}{\lambda-\mu_{2}^{*}}+\ldots+\frac{n_{k}^{*} \lambda}{\lambda-\mu_{k}^{*}} \tag{2}
\end{equation*}
$$

where $n_{i}^{*}=n\left(\beta_{i}^{*}\right)^{2}$ and $n_{1}^{*}+n_{2}^{*}+\ldots+n_{k}^{*}=n ; \mu_{i}^{*}$ and $\beta_{i}^{*}(i=1,2, \ldots, k)$ stand for the SEIDEL main eigenvalues and Seidel main angles of G, respectively. Using (1) and (2), we obtain the following relation

$$
\begin{equation*}
\prod_{m=1}^{k}\left(\lambda+2 \mu_{m}+1\right)=\left(\prod_{m=1}^{k}\left(\lambda-\mu_{m}^{*}\right)\right)\left(1+\sum_{m=1}^{k} \frac{n_{m}^{*}}{\lambda-\mu_{m}^{*}}\right) \tag{3}
\end{equation*}
$$

where $\mu_{m} \in \mathcal{M}(G)$ for $m=1,2, \ldots, k$. We note that if $\lambda \in \sigma(G) \backslash \mathcal{M}(G)$ then necessarily $-2 \lambda-1 \in \sigma^{*}(G) \backslash \mathcal{M}^{*}(G)$. Consequently, using (3) it follows that

$$
\begin{equation*}
\sum_{m=1}^{k} \frac{n_{m}^{*}}{\mu_{m}^{*}+2 \mu_{i}+1}=1 \quad(i=1,2, \ldots, k) \tag{4}
\end{equation*}
$$

Theorem 1. Let G be a graph of order n with two SEIDEL main eigenvalues μ_{1}^{*} and μ_{2}^{*}. Then

$$
\begin{equation*}
\mu_{1,2}=\frac{n-2-\mu_{1}^{*}-\mu_{2}^{*}}{4} \pm \frac{\sqrt{\left(\mu_{1}^{*}-\mu_{2}^{*}+n\right)^{2}-4 n_{1}^{*}\left(\mu_{1}^{*}-\mu_{2}^{*}\right)}}{4} \tag{5}
\end{equation*}
$$

Besides, we have

$$
\begin{equation*}
n_{1,2}=\frac{n}{2} \pm \frac{n^{2}+\left(n-2 n_{1}^{*}\right)\left(\mu_{1}^{*}-\mu_{2}^{*}\right)}{2 \sqrt{\left(\mu_{1}^{*}-\mu_{2}^{*}+n\right)^{2}-4 n_{1}^{*}\left(\mu_{1}^{*}-\mu_{2}^{*}\right)}} \tag{6}
\end{equation*}
$$

where $n_{i}=n \beta_{i}{ }^{2}$ for $i=1,2 ; \beta_{1}$ and β_{2} denote the main angles of μ_{1} and μ_{2}, respectively.
Proof. Using (3) by a straight-forward calculation we get (i) $2 \mu_{1}+2 \mu_{2}=n-2-$ $\mu_{1}^{*}-\mu_{2}^{*}$; and (ii) $4 \mu_{1} \mu_{2}=\mu_{1}^{*} \mu_{2}^{*}-\left(n_{2}^{*}-1\right) \mu_{1}^{*}-\left(n_{1}^{*}-1\right) \mu_{2}^{*}-(n-1)$, which provides relation (5).

In order to derive relation (6) first recall that $A^{*}=K-2 A$ and $e(G)+e(\bar{G})=$ $\binom{n}{2}$, where K is the adjacency matrix of the complete graph K_{n} and $e(G)$ is the number of edges of G. Making use of (i) $2\left(n_{1} \mu_{1}+n_{2} \mu_{2}\right)+\left(n_{1}^{*} \mu_{1}^{*}+n_{2}^{*} \mu_{2}^{*}\right)=2\binom{n}{2}$; and (ii) $n_{1}+n_{2}=n$, we easily obtain (6).

Further, according to [3, p. 50],

$$
\begin{equation*}
P_{G}(\lambda)=\frac{(-1)^{n}}{2^{n}} \frac{P_{G}^{*}(-2 \lambda-1)}{1+\frac{1}{2 \lambda} H_{G}\left(\frac{1}{\lambda}\right)} \tag{7}
\end{equation*}
$$

Setting $n_{i}=n \beta_{i}{ }^{2}$ where β_{i} is the main angle of μ_{i} for $i=1,2, \ldots, k$, note that $H_{G}(t)$ can be displayed in the form

$$
H_{G}\left(\frac{1}{\lambda}\right)=\frac{n_{1} \lambda}{\lambda-\mu_{1}}+\frac{n_{2} \lambda}{\lambda-\mu_{2}}+\ldots+\frac{n_{k} \lambda}{\lambda-\mu_{k}} .
$$

Combining (7) and the last relation, it is not difficult to see that the following relation is satisfied

$$
\begin{equation*}
\prod_{m=1}^{k}\left(\lambda-\mu_{m}^{*}\right)=\left(\prod_{m=1}^{k}\left(\lambda+2 \mu_{m}+1\right)\right)\left(1-\sum_{m=1}^{k} \frac{n_{m}}{\lambda+2 \mu_{m}+1}\right) \tag{8}
\end{equation*}
$$

from which we easily obtain

$$
\begin{equation*}
\sum_{m=1}^{k} \frac{n_{m}}{\mu_{i}^{*}+2 \mu_{m}+1}=1 \quad(i=1,2, \ldots, k) \tag{9}
\end{equation*}
$$

Theorem 2. Let G be a graph of order n with two main eigenvalues μ_{1} and μ_{2}. Then

$$
\begin{equation*}
\mu_{1,2}^{*}=\frac{n-2-2 \mu_{1}-2 \mu_{2}}{2} \pm \frac{\sqrt{\left(2 \mu_{1}-2 \mu_{2}+n\right)^{2}-8 n_{1}\left(\mu_{1}-\mu_{2}\right)}}{2} . \tag{10}
\end{equation*}
$$

Besides, we have

$$
\begin{equation*}
n_{1,2}^{*}=\frac{n}{2} \pm \frac{n^{2}+2\left(n-2 n_{1}\right)\left(\mu_{1}-\mu_{2}\right)}{2 \sqrt{\left(2 \mu_{1}-2 \mu_{2}+n\right)^{2}-8 n_{1}\left(\mu_{1}-\mu_{2}\right)}}, \tag{11}
\end{equation*}
$$

where $n_{1}^{*}=n\left(\beta_{1}^{*}\right)^{2}$ and $n_{2}^{*}=n\left(\beta_{2}^{*}\right)^{2}$.

Proof. Using (8) by an easy calculation we have (i) $\mu_{1}^{*}+\mu_{2}^{*}=n-2-2 \mu_{1}-2 \mu_{2}$; and (ii) $\mu_{1}^{*} \mu_{2}^{*}=4 \mu_{1} \mu_{2}-2\left(n_{2}-1\right) \mu_{1}-2\left(n_{1}-1\right) \mu_{2}-(n-1)$, which provides relation (10).

Next, making use of (i) $\left(n_{1}^{*} \mu_{1}^{*}+n_{2}^{*} \mu_{2}^{*}\right)+2\left(n_{1} \mu_{1}+n_{2} \mu_{2}\right)=2\binom{n}{2}$ and (ii) $n_{1}^{*}+n_{2}^{*}=n$, we arrive at (11), which completes the proof.

Let $\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right)$ and $\left(s_{1}^{(m)}, s_{2}^{(m)}, \ldots, s_{n}^{(m)}\right)$ denote the main eigenvectors of μ_{m} and μ_{m}^{*}, respectively, so that $\sum_{i=1}^{n} x_{i}^{(m)}=\sqrt{n_{m}}$ and $\sum_{i=1}^{n} s_{i}^{(m)}=\sqrt{n_{m}^{*}}$. Let $\operatorname{deg}(i)$ denotes the degree of the vertex i. With this notation, we have recently proved the following result:

Proposition 1 (Lepović [6]). Let $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathcal{M}(G)$. Then:

$$
\sqrt{n_{1}} x_{i}^{(1)}+\sqrt{n_{2}} x_{i}^{(2)}+\ldots+\sqrt{n_{k}} x_{i}^{(k)}=1 ;
$$

$\left(2^{\circ}\right) \quad \sqrt{n_{1}} x_{i}^{(1)} \mu_{1}+\sqrt{n_{2}} x_{i}^{(2)} \mu_{2}+\ldots+\sqrt{n_{k}} x_{i}^{(k)} \mu_{k}=\operatorname{deg}(i)$,
for any $i=1,2, \ldots, n$.
Proposition 2. Let $\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{k}^{*} \in \mathcal{M}^{*}(G)$. Then:

$$
\begin{align*}
& \sqrt{n_{1}^{*}} s_{i}^{(1)}+\sqrt{n_{2}^{*}} s_{i}^{(2)}+\ldots+\sqrt{n_{k}^{*}} s_{i}^{(k)}=1 \\
& \sqrt{n_{1}^{*}} s_{i}^{(1)} \mu_{1}^{*}+\sqrt{n_{2}^{*}} s_{i}^{(2)} \mu_{2}^{*}+\ldots+\sqrt{n_{k}^{*}} s_{i}^{(k)} \mu_{k}^{*}=(n-1)-2 \operatorname{deg}(i)
\end{align*}
$$

for any $i=1,2, \ldots, n$.
Proof. Let $\mathbb{M}=\left\{m \mid \lambda_{m}^{*} \in \sigma^{*}(G) \backslash \mathcal{M}^{*}(G)\right\}$. Then for any non-negative integer ℓ, we have

$$
\left(A^{*}\right)^{\ell}=\sum_{m=1}^{k} \mathbf{X}_{m}^{*}\left(\mu_{m}^{*}\right)^{\ell}+\sum_{m \in \mathbb{M}} \mathbf{Y}_{m}\left(\lambda_{m}^{*}\right)^{\ell}
$$

where $\mathbf{X}_{m}^{*}=\mathbf{X}_{m}^{*}\left[s_{i j}^{(m)}\right]$ and $\mathbf{Y}_{m}=\mathbf{Y}_{m}\left[y_{i j}^{(m)}\right]$ with $z_{i j}^{(m)}=z_{i}^{(m)} z_{j}^{(m)}$. Of course, here $\left\{\left(y_{1}^{(m)}, y_{2}^{(m)}, \ldots, y_{n}^{(m)}\right) \mid m \in \mathbb{M}\right\}$ represents a complete set of mutually orthogonal normalized eigenvectors which are related to $\left\{\lambda_{m}^{*} \in \sigma^{*}(G) \backslash \mathcal{M}^{*}(G) \mid m \in \mathbb{M}\right\}$ such that $y_{1}^{(m)}+y_{2}^{(m)}+\ldots+y_{n}^{(m)}=0$. Using the last relation we obtain

$$
\sum_{j=1}^{n}\left(a_{i j}^{*}\right)^{(\ell)}=\sum_{m=1}^{k}\left(\sum_{j=1}^{n} s_{j}^{(m)}\right) s_{i}^{(m)}\left(\mu_{m}^{*}\right)^{\ell}+\sum_{m \in \mathbb{M}}\left(\sum_{j=1}^{n} y_{j}^{(m)}\right) y_{i}^{(m)}\left(\lambda_{m}^{*}\right)^{\ell},
$$

which provides the proof.
Proposition 3. Let G be a connected or disconnected graph of order n with two Seidel main eigenvalues μ_{1}^{*} and μ_{2}^{*}. Then

$$
s_{i}^{(1)}=\frac{((n-1)-2 \operatorname{deg}(i))-\mu_{2}^{*}}{\sqrt{n_{1}^{*}}\left(\mu_{1}^{*}-\mu_{2}^{*}\right)} \quad \text { and } \quad s_{i}^{(2)}=\frac{\mu_{1}^{*}-((n-1)-2 \operatorname{deg}(i))}{\sqrt{n_{2}^{*}}\left(\mu_{1}^{*}-\mu_{2}^{*}\right)}
$$

for $i=1,2, \ldots, n$.

Proof. Combing relations Proposition $2\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$, by a straight-forward calculation we obtain the statement.
Remark 1. Using Proposition $1\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$, we easily find that (i) $x_{i}^{(1)}=$ $\frac{\operatorname{deg}(i)-\mu_{2}}{\sqrt{n_{1}}\left(\mu_{1}-\mu_{2}\right)}$ and (ii) $x_{i}^{(2)}=\frac{\mu_{1}-\operatorname{deg}(i)}{\sqrt{n_{2}}\left(\mu_{1}-\mu_{2}\right)}$ for $i=1,2, \ldots, n$.

Theorem 3. Let G be a connected or disconnected graph of order n with k main eigenvalues. Let $\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right)$ and $\left(s_{1}^{(m)}, s_{2}^{(m)}, \ldots, s_{n}^{(m)}\right)$ denote the main eigenvectors of μ_{m} and μ_{m}^{*}, respectively, so that $\sum_{i=1}^{n} x_{i}^{(m)}=\sqrt{n_{m}}$ and $\sum_{i=1}^{n} s_{i}^{(m)}=$ $\sqrt{n_{m}^{*}}$. Then

$$
\begin{equation*}
x_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}^{*}} s_{i}^{(j)}}{\mu_{j}^{*}+2 \mu_{m}+1}\right) \sqrt{n_{m}} \quad \text { and } \quad s_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}} x_{i}^{(j)}}{\mu_{m}^{*}+2 \mu_{j}+1}\right) \sqrt{n_{m}^{*}} \tag{12}
\end{equation*}
$$

for $i=1,2, \ldots, n$ and $m=1,2, \ldots, k$.
Proof. We shall first show that the right-hand side of (12) is true for any $i=$ $1,2, \ldots, n$ and $m=1,2, \ldots, k$. In order to prove that $\left(s_{1}^{(m)}, s_{2}^{(m)}, \ldots, s_{n}^{(m)}\right)$ is the eigenvector of the main eigenvalue μ_{m}^{*}, it is sufficient to demonstrate that its coordinates $s_{i}^{(m)}$ satisfy the following system of homogeneous linear equations

$$
\mu_{m}^{*} s_{i}^{(m)}=\sum_{\ell=1}^{n}\left(\sum_{j=1}^{k}\left[\left(1-2 a_{i \ell}\right)-a_{i \ell}^{(0)}\right] \frac{\sqrt{n_{j}} x_{\ell}^{(j)}}{\mu_{m}^{*}+2 \mu_{j}+1}\right) \sqrt{n_{m}^{*}}
$$

understanding that $a_{i j}^{(0)}=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta symbol. Indeed, using (9) and the equation $\mu_{j} x_{i}^{(j)}=\sum_{\ell=1}^{n} a_{i \ell} x_{\ell}^{(j)}$, the last relation is transformed into

$$
\mu_{m}^{*} s_{i}^{(m)}=\sqrt{n_{m}^{*}}-\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}} x_{i}^{(j)}\left(2 \mu_{j}+1\right)}{\mu_{m}^{*}+2 \mu_{j}+1}\right) \sqrt{n_{m}^{*}}
$$

from which we obtain the assertion using Proposition $1\left(1^{\circ}\right)$. In a quite analogous manner, making use of (4) and Proposition $2\left(1^{\circ}\right)$, we find that the left-hand side of (12) is also true for any $i=1,2, \ldots, n$ and $m=1,2, \ldots, k$.

Using (12) and keeping in mind that $\left\{\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right) \mid m=1,2, \ldots, k\right\}$ and $\left\{\left(s_{1}^{(m)}, s_{2}^{(m)}, \ldots, s_{n}^{(m)}\right) \mid m=1,2, \ldots, k\right\}$ are the complete systems of mutually orthogonal normalized eigenvectors, we arrive at

Proposition 4. Let G be a graph with k main eigenvalues. Then for any $m=$ $1,2, \ldots, k$ we have

$$
\frac{1}{n_{m}}=\sum_{i=1}^{k} \frac{n_{i}^{*}}{\left(\mu_{i}^{*}+2 \mu_{m}+1\right)^{2}} \quad \text { and } \quad \frac{1}{n_{m}^{*}}=\sum_{i=1}^{k} \frac{n_{i}}{\left(\mu_{m}^{*}+2 \mu_{i}+1\right)^{2}}
$$

Further, for any $\lambda^{*} \in \sigma^{*}(G)$ we have that $-\lambda^{*} \in \sigma(\bar{G})$. Since $\mathcal{E}_{A^{*}}\left(\lambda^{*}\right)=$ $\mathcal{E}_{\bar{A}^{*}}\left(-\lambda^{*}\right)$, we obtain implicitly $\mathcal{M}^{*}(\bar{G})=-\mathcal{M}^{*}(G)$, where $-\mathcal{M}^{*}(G)=\left\{\lambda^{*} \mid-\right.$ $\left.\lambda^{*} \in \mathcal{M}^{*}(G)\right\}$. Consequently, according to (2), we get

$$
\begin{equation*}
H_{\bar{G}^{*}}\left(\frac{1}{\lambda}\right)=\frac{n_{1}^{*} \lambda}{\lambda+\mu_{1}^{*}}+\frac{n_{2}^{*} \lambda}{\lambda+\mu_{2}^{*}}+\ldots+\frac{n_{k}^{*} \lambda}{\lambda+\mu_{k}^{*}} \tag{13}
\end{equation*}
$$

Next, let $\left(\bar{x}_{1}^{(m)}, \bar{x}_{2}^{(m)}, \ldots, \bar{x}_{n}{ }^{(m)}\right)$ denote the main eigenvector of $\bar{\mu}_{m} \in \mathcal{M}(\bar{G})$ such that $\sum_{i=1}^{n} \bar{x}_{i}^{(m)}=\sqrt{\bar{n}}$, where $\bar{n}_{m}=n \bar{\beta}_{m}^{2}$ and $\bar{\beta}_{m}$ is the main angle of $\bar{\mu}_{m}$. Using the last relation, we obtain from Theorem 3 that

$$
\bar{x}_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{n_{j}^{*}} s_{i}^{(j)}}{-\mu_{j}^{*}+2 \bar{\mu}_{m}+1}\right) \sqrt{\bar{n}_{m}} \quad \text { and } \quad s_{i}^{(m)}=\left(\sum_{j=1}^{k} \frac{\sqrt{\bar{n}_{j}} \bar{x}_{i}^{(j)}}{-\mu_{m}^{*}+2 \bar{\mu}_{j}+1}\right) \sqrt{n_{m}^{*}}
$$

and from Proposition 4 that

$$
\frac{1}{\bar{n}_{m}}=\sum_{i=1}^{k} \frac{n_{i}^{*}}{\left(-\mu_{i}^{*}+2 \bar{\mu}_{m}+1\right)^{2}} \quad \text { and } \quad \frac{1}{n_{m}^{*}}=\sum_{i=1}^{k} \frac{\bar{n}_{i}}{\left(-\mu_{m}^{*}+2 \bar{\mu}_{i}+1\right)^{2}}
$$

We note that if G is a self-complementary graph then its Seidel main spectrum is symmetric with respect to the zero point. Moreover, according to (2) and (13) it follows that $n_{\mu^{*}}=n_{-\mu^{*}}$ for any $\mu^{*},-\mu^{*} \in \mathcal{M}^{*}(G)$, by understanding that $n_{\mu^{*}}=n \beta_{\mu^{*}}^{2}$ and $\beta_{\mu^{*}}$ is the main angle of μ^{*}. In particular, if G is a selfcomplementary graph of order n with two Seidel main eigenvalues μ^{*} and $-\mu^{*}$, we obtain implicitly from Proposition 3 that $\pm \mu^{*}= \pm \sqrt{\frac{1}{n} \sum_{i=1}^{n}((n-1)-2 \operatorname{deg}(i))^{2}}$. We also note that in this case $n_{\mu^{*}}=n / 2$. Thus, if G is a self-complementary graph of order n with two main eigenvalues μ_{1} and μ_{2}, we find from (5) and (6) that

$$
\mu_{1,2}=\frac{n-2}{4} \pm \frac{\sqrt{n^{2}+4\left(\mu^{*}\right)^{2}}}{4} \quad \text { and } \quad n_{1,2}=\frac{n}{2} \pm \frac{n^{2}}{2 \sqrt{n^{2}+4\left(\mu^{*}\right)^{2}}}
$$

respectively.
Finally, in order to demonstrate some results presented in this paper we shall consider the following graph: $G=K_{2 n+1} \cup 3(n+1) K_{1}$, where $n K_{1}$ denotes a graph with n isolated vertices. We can see that $K_{2 n+1} \cup 3(n+1) K_{1}$ is integral ${ }^{1}$ in the ordinary and the SEIDEL sense for any non-negative integer n. Namely, $\sigma(G)$ and $\sigma^{*}(G)$ have two main eigenvalues $\mu_{1}=2 n, \mu_{2}=0$ and two Seidel main eigenvalues $\mu_{1}^{*}=4 n+3, \mu_{2}^{*}=-(3 n+1)$, respectively. Further, we have that (i) $n_{1}=2 n+1$ and $n_{2}=3(n+1)$; (ii) $n_{1}^{*}=\frac{32 n^{2}+48 n+16}{7 n+4}$ and $n_{2}^{*}=\frac{3 n^{2}}{7 n+4}$;

[^0](iii) $\sigma(G)=\left\{2 n, 0^{3(n+1)},-1^{2 n}\right\}$ and $\sigma^{*}(G)=\left\{4 n+3,1^{2 n},-1^{3 n+2},-(3 n+1)\right\}$, where the multiplicity of a multiple eigenvalue is given in the form of an exponent. Besides, we find that (iv) $x_{i}^{(1)}=\frac{1}{\sqrt{2 n+1}}$ if $i \in V\left(K_{2 n+1}\right)$ and $x_{i}^{(1)}=0$, otherwise, where $V(G)$ is the vertex set of $G ;(\mathrm{v}) x_{i}^{(2)}=0$ if $i \in V\left(K_{2 n+1}\right)$ and $x_{i}^{(2)}=$ $\frac{1}{\sqrt{3(n+1)}}$, otherwise; (vi) $s_{i}^{(1)}=\frac{\sqrt{n+1}}{\sqrt{(2 n+1)(7 n+4)}}$ if $i \in V\left(K_{2 n+1}\right)$ and $s_{i}^{(1)}=$ $\frac{\sqrt{2 n+1}}{\sqrt{(n+1)(7 n+4)}}$, otherwise; and (vii) $s_{i}^{(2)}=\frac{\sqrt{3}}{\sqrt{7 n+4}}$ if $i \in V\left(K_{2 n+1}\right)$ and $s_{i}^{(2)}=$ $\frac{-\sqrt{3}}{3 \sqrt{7 n+4}}$, otherwise.

REFERENCES

1. D. Cvetković: Graphs and their spectra. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 356 (1971), 1-50.
2. D. Cvetković: The main part of the spectrum, divisors and switching of graphs. Publ. Inst. Math. (Belgrade), 23 (37) (1978), 31-38.
3. D. Cvetković, M. Doob, H. Sachs: Spectra of graphs - Theory and applications. 3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg - Leipzig, 1995.
4. D. Cvetković, P. Rowlinson, S. Simić: Eigenspaces of graphs. Cambridge University Press, Cambridge, 1997.
5. M. Lepović: On eigenvalues and main eigenvalues of a graph. Math. Moravica, 4 (2000), 51-58.
6. M. Lepović: Some results on graphs with exactly two main eigenvalues. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 12 (2001), 68-84.

Tihomira Vuksanovića 32,

[^0]: ${ }^{1}$ A graph is called integral if its spectrum consists entirely of integers. We notice from (8) that if G is integral then G is integral in the Seidel sense if and only if the Seidel main spectrum $\mathcal{M}^{*}(G)$ contains integral values.

