
Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. 12 (2001), 61–63.

ON THE CONVERGENCE OF THE SERIES∑
a1−xn/n

n

Gergely Pataki

We show that, for any sequence ( an) of positive numbers and any bounded

sequence ( xn) of real numbers, the series
∑

an and
∑

a
1−xn/n
n either

both converge or both diverge.

Throughout this paper, the letters N and R will stand for the sets of all
natural and real numbers, respectively. We start with a useful inequality.

Lemma. If a, x, δ ∈ R and n ∈ N such that 0 < a ≤ 1 and |x| ≤ δ ≤ n, then

a1−x/n < (a + 2−n) 2δ.

Proof. If x < 0, then 1 < 1− x/n. Hence, since 0 < a ≤ 1 and 0 ≤ δ , it follows
that

a 1−x/n ≤ a ≤ a 2 δ.

Suppose now that 0 ≤ x. If a < 2−n, then since 0 ≤ 1 − x/n and x ≤ δ it is clear
that

a1−x/n ≤
(
2−n

)1−x/n = 2−n 2x ≤ 2−n 2δ.

While, if 2−n ≤ a, then a−1/n ≤ 2. Hence, since 0 ≤ x ≤ δ and 0 < a, it follows
that

a1−x/n = a
(
a−1/n

)x ≤ a 2x ≤ a 2δ.

Therefore, the required inequality is also true.

Now, by using the above lemma, we can easily prove the following

Theorem. Let (an) be a sequence in R such that an > 0 for all n ∈ N. Then the
following assertions are equivalent :

(1) the series
∑

an converges ;
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(2) the series
∑

a
1−xn/n
n converges for all bounded sequence (xn) in N;

(3) the series
∑

a
1−xn/n
n converges for some bounded sequence (xn) in R.

Proof. Suppose that the assertion (1) holds and (xn) is a bounded sequence in R.
Then (an) → 0 and δ = supn∈N |xn| < +∞. Therefore, there exists n0 ≥ δ such
that an ≤ 1 for all n ≥ n0. Now, by the above lemma, it is clear that

a1−xn/n
n ≤ (an + 2−n) 2δ

for all n ≥ n0. Hence, since the series
∑

an and
∑

2−n converge, it follows that
the series

∑
a
1−xn/n
n also converges.

Since the implication (2)⇒ (3) is trivially true, suppose now that the assertion
(3) holds. Define δ = supn∈N |xn| and choose n0 ∈ R such that 1 + δ ≤ n0. Then,
for all n ≥ n0, we have

1 ≤ n0 − δ ≤ n− δ ≤ n− |xn| ≤ n− xn ≤ |n− xn|.

Therefore, we may define a sequence (yn) in R such that

yn = n xn/(xn − n)

for all n ≥ n0. Then, by the triangle inequality, it is clear that

|yn| = |xn − x 2
n/(n− xn)| ≤ |xn|+ |xn| 2/|n− xn| ≤ δ + δ2

for all n ≥ n0. Therefore, the sequence (yn) is bounded. Hence, by the implication
(1) ⇒ (2), it follows that the series

∑
( a

1−xn/n
n )1−yn/n converges. Now, since

an = (a1−xn/n
n )1−yn/n

for all n ≥ n0, it is clear that the assertion (1) also holds.

The following example shows that the assumption that the sequence (xn) is
bounded cannot be dropped or even weakened to the assumption that (xn/n) is a
null sequence.

Example. Let (an) and (xn) be sequences in R such that a1 > 0 and

an =
1

n
(
log (n)

)2 and xn =
n

1 +
√

log
(
n log (n)

)
for all n ≥ 2. Then the series

∑
an converges, but the series

∑
a
1−xn/n
n diverges

despite that (xn/n)→ 0.

By using Cauchy’s condensation test, it can be easily shown that the series∑
an converges, but the series

∑
an log (n) diverges [2, p. 399]. Therefore, to

prove the divergence of the series
∑

a
1−xn/n
n , it is enough to show only that

an log (n) ≤ a1−xn/n
n
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for all n ≥ 3. For this, assume that n ≥ 3 and define

qn =
√

log
(
n log (n)

)
.

Then, by using that e ≤ n and the functions log and sqrt are increasing, we can
easily see that 1 ≤ log (n), log (n) ≤ log (n log (n)), and hence

√
log (n) ≤ qn.

Hence, since log (x) ≤
√

x for all x > 0, we can infer that

log
(
log (n)

)
≤ qn.

This implies that qn log
(
log (n)

)
≤ q 2

n . Therefore, we also have(
log (n)

)qn = eqn log (log (n)) ≤ eq 2
n = elog (n log (n)) = n log (n).

This implies that (log (n))1+qn ≤ n (log (n))2 = a−1
n . Therefore, we also have

log (n) ≤
(
a−1

n

)1/ (1+qn)
= a−1/(1+qn)

n .

Hence, it follows that

an log (n) ≤ a 1−1/(1+qn)
n = a1−xn/n

n .
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