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ON A CONVERSE OF JENSEN’S INEQUALITY

S. S. Dragomir

The main aim of this paper is to point out a refinement of the reverse of
Jensen’s inequality obtained in 1994 by Dragomir and Ionescu.

1. INTRODUCTION

In 1994, S. S. Dragomir and N. M. Ionescu [2], obtained the following
reverse of Jensen’s inequality for convex functions:

(1.1) 0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pixif(xi)−
n∑

i=1

pixi

n∑
i=1

pif
′(xi),

provided that f : I ⊆ R → R is differentiable convex on I
◦
(I
◦
is the interior of the

interval I), xi ∈ I
◦
, pi > 0 (i = 1, . . . , n) and

∑n
i=1 pi = 1. If f is strictly convex on

I
◦
, then the case of equality holds in (1.1) iff x1 = · · · = xn.

For some applications of this result see for example the recent papers [3] and
[4].

The main aim of this paper is to point out a refinement of the reverse of
Jensen’s inequality stated in (1.1).

THE RESULTS

The following inequality holds.

Lemma 1. Let f : I ⊆ R → R be a differentiable convex function on I
◦
, xi ∈ I

◦
,

pi > 0 (i = 1, . . . , n with
∑n

i=1 pi = 1. Then we have the inequality

(2.1)
n∑

i=1

pif(xi) ≤
n∑

i=1

pixif
′(xi) + inf

x∈I
◦

(
f(x)− x

n∑
i=1

pif
′(xi)

)
.
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Proof. As f is differentiable convex on I
◦
, then for all x, y ∈ I

◦
we have the inequa-

lity:

(2.2) f(x)− f(y) ≥ f ′(y)(x− y).

If we choose in (2.2) y = xi (i = 1, . . . , n), multiply with pi > 0 and sum over i
from 1 up to n, we get

f(x)−
n∑

i=1

pif(xi) ≥ x
n∑

i=1

pif
′(xi)−

n∑
i=1

pixif
′(xi)

which is clearly equivalent to

(2.3) f(x)− x
n∑

i=1

pif
′(xi) +

n∑
i=1

pixif
′(xi) ≥

n∑
i=1

pif(xi)

for all x ∈ I
◦
.

Taking the infimum over x ∈ I
◦
, we deduce (2.1). 2

The following result concerning a refinement of the Dragomir-Ionescu (1.1)
holds.

Theorem 1. With the assumptions of Lemma 1 for f , xi, pi, we have the inequal-
ity:

(2.4) 0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≤ inf
x∈I

◦

(
f(x)− x

n∑
i=1

pif
′(xi)

)
+

n∑
i=1

pixif
′(xi)− f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pixif
′(xi)−

n∑
i=1

pixi

n∑
i=1

pif
′(xi).

Proof. The second inequality in (2.4) follows by the first one in (2.1).
It is obvious that

inf
x∈I

◦

(
f(x)− x

n∑
i=1

pif
′(xi)

)
≤ f(x̄)− x̄

n∑
i=1

pif
′(xi),

where x̄ :=
∑n

i=1 pixi ∈ I
◦
, and then the last part of (2.4) is proved. 2

For applications we may use the following result.

Lemma 2. Let f : I ⊆ R → R be a differentiable, strictly convex function on I
◦
,

xi ∈ I
◦
, pi > 0 and

∑n
i=1 pi = 1. Then we have the inequality

(2.5)
n∑

i=1

pif(xi) ≤
n∑

i=1

pixif
′(xi) + f

(
(f ′)−1

( n∑
i=1

pif
′(xi)

))
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−(f ′)−1

(
n∑

i=1

pif
′(xi)

)
·

n∑
i=1

pif
′(xi),

where (f ′)−1 denotes the inverse function of the derivative f ′ defined on f ′(I
◦
).

The case of equality holds in (2.5) iff x1 = · · · = xn.

Proof. Define the function g : I
◦
→ R, g(x) = f(x)−x

∑n
i=1 pif

′(xi). Obviously, g

is differentiable on I
◦
and

(2.6) g′(x) = f ′(x)−
n∑

i=1

pif
′(xi).

The equation g′(x) = 0, x ∈ I
◦
is equivalent to

(2.7) f ′(x) =
n∑

i=1

pif
′(xi)

and since
∑n

i=1 pif
′(xi) ∈ f ′(I

◦
), f ′ is one-to-one, being strictly increasing on I

◦
, it

follows that the equation (2.7) has a unique solution x0 ∈ I
◦
which is given by

(2.8) x0 := (f ′)−1

(
n∑

i=1

pif
′(x)

)
∈ I

◦
,

where (f ′)−1 is the inverse function of the derivative f ′ defined on f ′(I
◦
).

Taking into account that g′(x) < 0 if x < x0, x ∈ I
◦
and g′(x) > 0 if x > x0,

x ∈ I
◦
, it follows that

inf
x∈I

◦
g(x) = g(x0) = f

(
(f ′)−1

( n∑
i=1

pif
′(xi)

))
− (f ′)−1

( n∑
i=1

pif
′(xi)

)
·

n∑
i=1

pif
′(xi).

Using (1.1) we deduce (2.5).

The case of equality follows by the strict convexity of I
◦

and we omit the
details. 2

We can now state the following refinement of the Dragomir-Ionescu result
(1.1).

Theorem 2. Let f, xi, pi be as in Lemma 2. Then we have the inequality

(2.9) 0 ≤
n∑

i=1

pif(xi)− f
( n∑

i=1

pixi

)
≤

n∑
i=1

pixif
′(xi) + f

(
(f ′)−1

( n∑
i=1

pif
′(xi)

))
−(f ′)−1

(
n∑

i=1

pif
′(xi)

)
·

n∑
i=1

pif
′(xi)− f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pixif
′(xi)−

n∑
i=1

pif
′(xi)

n∑
i=1

pixi.
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The equality holds in (2.9) iff x1 = · · · = xn.

The proof is obvious by Theorem 1 Lemma 2.

Remark. We note that with the assumptions in Lemma 2, we have the double
inequality

(2.10) f
( n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi) ≤
n∑

i=1

pixif
′(xi) + f

(
(f ′)−1

( n∑
i=1

pif
′(xi)

))
−

n∑
i=1

pif
′(xi) · (f ′)−1

( n∑
i=1

pif
′(xi

)
,

with equality iff x1 = · · · = xn.

If g is differentiable and strictly concave, then

(2.11) g
( n∑

i=1

pixi

)
≥

n∑
i=1

pig(xi) ≥
n∑

i=1

pixig
′(xi) + g

(
− (g′)−1

(
−

n∑
i=1

pig
′(xi)

))
+

n∑
i=1

pig
′(xi) · (g′)−1

(
−

n∑
i=1

pig
′(xi)

)
,

with equality iff x1 = · · · = xn.

The proof of (2.11) follows by (2.10) choosing f = −g.
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