INEQUALITIES FOR PARTS OF THE HARMONIC SERIES

Walther Janous

In this short note we prove some inequalities for sums of the certain subsequences of the set $\{1,1 / 2,1 / 3, \ldots\}$.

PRELIMINARIES

In [3] there were published five inequalities of type

$$
f(N ; a, b)-\frac{1}{a N+a+b}<\sum_{k=0}^{N} \frac{1}{a k+b}<f(N ; a, b)-\frac{1}{2 a N+a+b},
$$

namely the cases $(a, b) \in\{(2,1),(3,1),(3,2),(4,1),(4,3)\}$. (Note throughout the quoted paper the misprint n instead N.)

It is the goal of this note to improve and extend the above inequalities to more general pairs $(a, b) \in \mathbf{N}^{2}$ of coefficients satisfying $a \geq 2$ and $1 \leq b \leq a-1$.

In order to achieve this we recall the following three facts.
As usually let $\Psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ be the derivative of $\log \Gamma(x)$. Then
(A) $\sum_{k=0}^{N} \frac{1}{k+z}+\Psi(z)=\Psi(z+N+1)$, where $N \geq 0$ is entire and $z \in \mathbf{C}, z \neq 0$, $-1,-2, \ldots([\mathbf{2}]$, p. 774$)$.
(B) $\Psi\left(\frac{b}{a}\right)=-C-\log (2 a)-\frac{\pi}{2} \cot \frac{b \pi}{a}+2 \sum_{j=1}^{[(a-1) / 2]} \cos \frac{b j \pi}{a} \log \sin \frac{j \pi}{a}$, where a and b are natural numbers satysfying $a \geq 2$ and $1 \leq b \leq a-1$ and C denotes Euler's constant ([2], p. 775).

[^0](C) Inequality of J. SÁndor ([1], p. 453):
$$
\log \left(x-\frac{1}{2}\right)<\log \left(x-\frac{1}{2}+\frac{1}{16 x}\right)
$$
where $x>1$.

RESULT

We are now in the position to prove the announced result.
Let $F(a, b)=\frac{1}{a}\left(C+\frac{\pi}{2} \cot \frac{b \pi}{a}-2 \sum_{j=1}^{[(a-1) / 2]} \cos \frac{b j \pi}{a} \log \sin \frac{j \pi}{a}\right)$. Then we have the following

Theorem. Let a and b be natural numbers such that $a \geq 2$ and $1 \leq b \leq a-1$. Then for all nonnegative entire numbers N the inequality

$$
\begin{aligned}
\frac{1}{a} \log (2 a N+a+2 b) & +F(a, b)<\sum_{k=0}^{N} \frac{1}{a k+b} \\
& <\frac{1}{a} \log \left(2 a N+a+2 b+\frac{a^{2}}{8(a N+a+b)}\right)+F(a, b)
\end{aligned}
$$

is valid.
Proof. Putting in (A) $z=b / a$, we get

$$
\begin{equation*}
a \sum_{k=0}^{N} \frac{1}{a k+b}+\Psi\left(\frac{b}{a}\right)=\Psi\left(\frac{b}{a}+N+1\right) \tag{1}
\end{equation*}
$$

Furthermore (C) yields
(2) $\quad \log (2 a N+a+2 b)-\log (2 a)<\Psi\left(\frac{b}{a}+N+1\right)$

$$
<\log \left(2 a N+a+2 b+\frac{a^{2}}{8(a N+a+b)}\right)-\log (2 a)
$$

Hence (1), (2) and (B) readily lead to the stated inequality.
Remark. Because of

$$
\begin{aligned}
\log \left(2 a N+a+2 b+\frac{a^{2}}{8(a N+a+b)}\right) & <\log (2 a N+a+2 b)+\log \left(1+\frac{a^{2}}{2 a N \cdot 8 a N}\right) \\
& <\log (2 a N+a+2 b)+\frac{1}{16 N^{2}},
\end{aligned}
$$

we can replace the right-hand side of the double inequality by the weaker but maybe more appealing expression $\frac{1}{a} \log (2 a N+a+2 b)+F(a, b)+\frac{1}{16 a N^{2}}$.

As an immediate consequence of the proved theorem we note the following asymptotic formula.

Corollary. $\sum_{k=0}^{N} \frac{1}{a k+b}=\frac{1}{a} \log (2 a N+a+2 b)+F(a, b)+O\left(1 / N^{2}\right)$, as $N \rightarrow \infty$.

REFERENCES

1. D. S. Mitrinović, J. Sándor, B. Crstici: Handbook of Number Theory. Kluwer Acad. Publ., Dordrecht 1996.
2. A. P. Prudnikov, J. A. Brychkov, O. A. Marichev: Integrals and Series (Elementary Functions) (in Russian). Nauka, Moscow 1981.
3. Z. F. Starc: On some inequalities for sums of inverse natural numbers. Jinzhou Shizhuan Xuebae, No 1 (1998), 25-26.

Ursulinengymnasium,
Fürstenweg 86,
A-6020 Innsbruck, Austria,
Private: Schneeburggasse 169,
A-6020 Innsbruck,
Austria

[^0]: 2000 Mathematics Subject Classification: 26D15
 Keywords and Phrases: Inequalities, Harmonic series

