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GENERALISED MOMENTS

FOR THE POISSON LAW

Slavko Simić

For the ordinary Poisson probability law with parameter λ we consider

generalised moments of the form E(XρL(X)), ρ ∈ R, where L(·) is

slowly varying function in Karamata sense. We are proving here that

E(XρL(X)) ∼ λρL(λ), λ → ∞, and, as a consequence, obtain inversion

formulae in terms of Laplace-Stieltjes transform.

Preliminaries. The Poisson probability law with parameter λ > 0 is defined for

a random variable X as: P{X = k} =
λk

k!
e−λ. Its ordinary moments of order m

are defined as:

E(Xm) :=
∞∑

k=1

e−λkm λk

k!
(m ∈ N).

There is a very complicated asymptotic formula for E(Xm) when m → ∞,
1 − δ < λ < 1 + δ, 0 < δ < 1, (cf.[3] p.p. 294-5). Our task here is to reveal the
behavior of generalised moments

E(XρL(X)) :=
∑

kρL(k)
λk

k!
e−λ (ρ ∈ R),

for large values of parameter λ. We take a slowly varying function L(x) as defined
for x > 0, positive, measurable and satisfying ∀t > 0 : L(ty) ∼ L(y), (y → ∞).
Some examples of slowly varying functions are:

1, loga x, logb(log x), exp(logc x); a, b ∈ R; 0 < c < 1.

Topics of Karamata’s theory of regular variation can be found in [1] and [4].
A tantamount of our results is a valuation of the Poisson distribution function

P (x) :=
∑
k≤x

λk

k!
e−λ (x, λ ∈ R+),
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(cf.[5]). Namely, in [5] we proved

(1) P (ξλ) =
{

O(1) e−λg(ξ) (0 < ξ < 1);
1 + O(1) e−λg(ξ) (ξ > 1);

(λ →∞),

where g(ξ) := ξ log ξ + 1− ξ is convex for ξ > 0 and positive for ξ 6= 1.

Results. For generalised moments of the Poisson law, mentioned above, we have
the following theorem:

Theorem 1. For any ρ ∈ R,

E(XρL(X)) ∼ λρL(λ) (λ →∞).

For the proof we need two lemma’s.

Lemma 1. For any slowly varying L(·) defined as above, and any ρ ∈ R,

e−λ
∑

k≤ξλ

kρL(k)
λk

k!
∼

{
o(λρL(λ)) (0 < ξ < 1);
λρL(λ) (xi > 1). (λ →∞)

This lemma is proved in [5] using the estimation (1).

Lemma 2. For α > 0 and any slowly varying L(·),

sup
t≥y

(t−αL(t)) ∼ y−αL(y) (y →∞).

This is a well-known fact (cf.[1] p. 23).

Proof of Theorem 1. We have that

E(XρL(X)) := e−λ
∑

k

kρL(k)],
λk

k!
= e−λ

( ∑
k<3λ

+
∑

k≥3λ

)
kρL(k)

λk

k!
= S1 + S2.

According to Lemma 1, S1 ∼ λρL(λ), ρ ∈ R (λ →∞). Using Lemma 2 and
the fact that for k ≥ 3λ,

λk

k!
≤ (k/3)k

k!
= o(1)(e/3)k (k →∞)

we get

S2 = o(1) sup
k≥3λ

(k−|ρ|−1L(k))
∑

k≥3λ

kρ+|ρ|+1(e/3)k = o(1)λ−|ρ|−1L(λ) (λ →∞)

since the last sum is tending to zero as a reminder of a convergent series. Therefore,
Theorem 1 is proved.
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We consider now a distribution function F with a support on R+ and its
Laplace-Stieltjes transform φ defined for s > 0 as

φ(s) :=
∫ ∞

0

e−std(F (t)).

Derivatives φ(k), k ∈ N, always exist and

(−1)kφ(k)(s) =
∫ ∞

0

e−sttkdF (t).

Our task now is to obtain an inversion formula which is a generalisation of
the known one (m = 0, cf.[2], II p. 270).

Theorem 2. For any fixed m ∈ N,∑
k≤xy

(−1)k+m yk+m

kmk!
φ(k+m)(y) → F (x) (y →∞)

at any point of continuity of the distribution F.

Proof. Putting in Lemma 1, L(·) := 1, ρ = −m, λ = ty, ξt = x, we get:

(2)
∑

k≤xy

yk+m

kmk!
e−ty tk+m →

{
0, t > x;
1, t < x.

(y →∞)

Integrating (2) over t ∈ R+ with respect to the measure dF , we obtain the assertion
from Theorem 2.
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