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GENERALISED MOMENTS
FOR THE POISSON LAW

Slavko Simic

For the ordinary POISSON probability law with parameter A we consider
generalised moments of the form F(X?L(X)), p € R, where L(-) is
slowly varying function in KARAMATA sense. We are proving here that
E(XPL(X)) ~ AL(\), A — oo, and, as a consequence, obtain inversion
formulae in terms of LAPLACE-STIELTJES transform.

Preliminaries. The POISSON probability law with parameter A > 0 is defined for
k

A
a random variable X as: P{X =k} = o e~ . Tts ordinary moments of order m

are defined as:
o0

m — m Ak
BE(X™) =Y ek o (meN).
k=1
There is a very complicated asymptotic formula for E(X™) when m — oo,
1-0<A<1+446,0<0<1, (cf[3] p.p. 294-5). Our task here is to reveal the
behavior of generalised moments

e
B(XPL(X)) =) KL(k) 7¢™  (pER),
for large values of parameter A. We take a slowly varying function L(z) as defined
for x > 0, positive, measurable and satisfying V¢t > 0 : L(ty) ~ L(y), (y — 00).
Some examples of slowly varying functions are:

1, log®xz, log’(logz), exp(log®z); a,beR; 0<c< 1.

Topics of KARAMATA’s theory of regular variation can be found in [1] and [4].
A tantamount of our results is a valuation of the PoISsON distribution function
)\k
P(x):=Y e  (z,AeRY),

]
= k!
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(cf.[5]). Namely, in [5] we proved

O(1) e=29() (0<¢<1);

w  ren={ P e G55 (A= o),

where g(§) := £log& + 1 — £ is convex for £ > 0 and positive for £ # 1.

Results. For generalised moments of the POISSON law, mentioned above, we have
the following theorem:

Theorem 1. For any p € R,
E(XPL(X)) ~ AL()\) (A — ).

For the proof we need two lemma’s.

Lemma 1. For any slowly varying L(-) defined as above, and any p € R,

- , o(AL(X) (0<&<1);
Ak;/\kL m N{ NL(\) (zi > 1). (A — 00)

This lemma is proved in [5] using the estimation (1).

Lemma 2. For o > 0 and any slowly varying L(-),

sup(t™“L(t)) ~y “L(y)  (y — o).

t>y

This is a well-known fact (cf.[1] p. 23).
Proof of Theorem 1. We have that

E(XPL(X)) = e Z kP L(k ( D )k”L = Si + Ss.

k<3 k>3X

According to Lemma 1, S1 ~ AL()A), p € R (A — o0). Using Lemma 2 and
the fact that for k > 3,

k k
X< EBE o)/ (k- o0)

Sy = o(1) sup (k™17 L(k)) Y kPP (e/3)F = o()ATIPITIL(N) (A — o0)
k>3\

since the last sum is tending to zero as a reminder of a convergent series. Therefore,
Theorem 1 is proved.
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We consider now a distribution function F' with a support on Rt and its
LAPLACE-STIELTJES transform ¢ defined for s > 0 as

o(s) :== / e StA(F(t)).
0
Derivatives ¢¥), k € N, always exist and

(—1)kp®) (s) = / T et dR (1),

0

Our task now is to obtain an inversion formula which is a generalisation of
the known one (m =0, cf.[2], IT p. 270).

Theorem 2. For any fired m € N,

e emy oy .
S (0 ) () (y > oo)
k<zy '

at any point of continuity of the distribution F.
Proof. Putting in Lemma 1, L():=1, p=—m, A =ty, {t =z, we get:

k+m .
(2) v ety ghtm {O’ >z (y — o0)

k™! 1, t<ux.
k<zy
Integrating (2) over t € Rt with respect to the measure dF, we obtain the assertion
from Theorem 2.
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