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PRESEMINORM GENERATING RELATIONS

AND THEIR MINKOWSKI FUNCTIONALS

Árpád Száz

We show that instead of the Minkowski functionals of summative sequences
of absorbing, balanced subsets of a vector space X it is more convenient
to consider first the Minkowski functionals of absorbing, balanced valued
additive relations of certain dense subsets of R+ onto X.

0. INTRODUCTION

In this paper, motivated by the results of [5] and the metrization theorems of [2,
p. 18] and [1, p. 11], we shall introduce and investigate the following definitions.

A dense subset D of the set R+ of all positive numbers is called admissible if

(1) r + s ∈ D for all r, s ∈ D;

(2) r − s ∈ D for all r, sD with s < r.

A relation F of an admissible subset DF of R+ onto a vector space X is
called a preseminorm generating relation for X if

(1) F (r) + F (s) ⊂ F (r + s) for all r, s ∈ DF ;

(2) F (r) is an absorbing, balanced subset of X for all r ∈ DF .

If p is a preseminorm on X, then the relations Fp and F p on R+ to X, defined
by

Fp(r) = p−1
(
[0, r[

)
and F p(r) = p−1

(
[0, r]

)
for all r ∈ R+, are called the lower and upper preseminorm generating relations
induced by p.
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If F is a preseminorm generating relation for X, then the function pF , defined
by pF (x) = inf

(
F−1(x)

)
for all x ∈ X, is called the Minkowski functional or

gauge of F.

The set NF =
⋂

r∈DF

F (r) is called the kernel of F.

The relations F∗ and F ∗ on R+ to X, defined by

F∗(r) =
⋃

u<r
F (u) and F ∗(r) =

⋂
r<v∈DF

F (v)

for all r ∈ R+, are called the lower and upper regularizations of F.

Moreover, the relation F̃ = F ∪ F∗ is called the natural extension of F.

To let the reader feel the appropriateness of the above definitions, we shall
only quote here the following three theorems.

Theorem 1. If p is a preseminorm on X, then Fp and F p are preseminorm
generating relations for X such that Fp ⊂ F p. Moreover,

NFp
= NF p

= p−1(0), Fp =
(
Fp

)
∗ =

(
F p

)
∗, F p =

(
Fp

)∗ =
(
F p

)∗
.

Remark 1. Therefore, the equalities Fp =
(
Fp

)∗
, F p =

(
F p

)
∗, Fp = F p, p = 0,

Fp = R+ ×X and F p = R+ ×X are equivalent.

Theorem 2. If F is a preseminorm generating relation for X, then pF is the
unique preseminorm on X such that

FpF
(r) ⊂ F (r) ⊂ F pF

(r)

for all r ∈ DF . Moreover, NF = p−1
F (0), and F∗ = FpF

and F ∗ = F pF
.

Remark 2. Therefore, pF = pF∗ = pF∗ and NF = NF∗ = NF∗ , and moreover
F∗ =

(
F∗

)
∗ =

(
F ∗

)
∗ and F ∗ =

(
F∗

)∗ =
(
F ∗

)∗
.

Theorem 3. If F is a preseminorm generating relation for X, then F̃ is a pre-
seminorm generating relation for X such that

F̃ (r) = F (r) if r ∈ DF and F̃ (r) = F∗(r) if r ∈ R+ \DF .

Moreover, pF = p
F̃

and NF = N
F̃
, and F∗ =

(
F̃

)
∗ and F ∗ =

(
F̃

)∗
.

Remark 3. Unfortunately, if F is homogeneous in the sense that

rF (s) ⊂ F (rs)

for all r, s ∈ DF , then in contrast to the regularizations F∗ and F ∗, the extension
F̃ need not be homogeneous.
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1. PREREQUISITES

A subset F of a product set X × Y is called a relation on X to Y. If in
particular X = Y, then we simply say that F is a relation on X. Note that if F is
a relation on X to Y, then F is also a relation on X ∪ Y.

If F is a relation on X to Y, and moreover x ∈ X and A ⊂ X, then the sets
F (x) = {y ∈ X : (x, y) ∈ F} and F [A] =

⋃
x∈A F (x) are called the images of x

and A under F. If A /∈ X, then we may write F (A) in place of F [A].
If F is a relation on X to Y, then the sets DF = {x ∈ X : F (x) 6= ∅} and

RF = F [DF ] are called the domain and range of F, respectively. If in particular
X = DF (and Y = RF ), then we say that F is a relation of X into (onto) Y.

A relation F on X to Y is said to be a function if for each x ∈ DF there
exists a unique y ∈ Y such that y ∈ F (x). In this case, by identifying singletons
with their elements, we usually write F (x) = y in place of F (x) = {y}.

If F is a relation on X to Y, then the values F (x), where x ∈ X, uniquely
determine F since we have F =

⋃
x∈X{x} × F (x). Therefore, the inverse relation

F−1 of F can be defined such that F−1(x) = {y ∈ Y : x ∈ F (y)} for all x ∈ X.

Throughout in the sequel, X will denote a vector space over K = R or C.
And for any λ ∈ K and A, B ⊂ X we write λA = {λx : x ∈ A} and A + B =
{x + y : x ∈ A, y ∈ B}.

Note that thus two axioms of a vector space may fail to hold for the family
P(X) of all subsets of X. Namely, only the one-point subsets of X can have additive
inverses. Moreover, in general, we only have (λ + µ) A ⊂ λA + µA.

If A ⊂ X and D ⊂ R+, then we say that:

(1) A is D–absorbing if X =
⋃

r∈D rA;

(2) A is balanced if λA ⊂ A for all λ ∈ K with |λ| ≤ 1;

(3) A is D–convex if rA + (1− r)A ⊂ A for all r ∈ D with r < 1.

In particular, the set A is called absorbing (convex) if it is R+–absorbing
(R+–convex).

A function p of X into R is called a preseminorm [3] on X if

(1) lim
λ→0

p(λx) = 0 for all x ∈ X;

(2) p(λx) ≤ p(x) for all λ ∈ K, with |λ| ≤ 1, and x ∈ X;

(3) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X.

In particular, a preseminorm p on X is called a seminorm if instead of the
conditions (1) and (2) the condition p(λx) ≤ |λ|p(x) holds for all λ ∈ K and x ∈ X.
Moreover, a seminorm (preseminorm) p is called a norm (prenorm) if p(x) = 0
implies x = 0.

If p is a preseminorm on X, then for each r ∈ R+ the relations Bp
r and B̄p

r

on X, defined by

Bp
r (x) =

{
y ∈ X : p (x− y) < r

}
and B̄p

r (x) =
{
y ∈ X : p(x− y) ≤ r

}
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for all x ∈ X, are called the r-sized open and closed p–surroundings in X, respec-
tively.

Concerning the above basic concepts we shall only need here the following
simple theorems.

Theorem 1.1. If A ⊂ X and D ⊂ R+ such that D is closed under addition and
division, then the following assertions hold:

(1) if A is D–convex, then (r + s)A = rA + sA for all r, s ∈ D;

(2) if A is balanced, then λA ⊂ µA for all λ, µ ∈ K with |λ| ≤ |µ|.
Remark 1.2. Therefore, a balanced subset A of X is absorbing if and only if it is
N–absorbing.

Theorem 1.3. If p is a preseminorm on X and x ∈ X, then

(1) p(0) = 0; (2) p(x) ≥ 0;

(3)
∣∣ p(x)− p(y)

∣∣ ≤ p(x− y) for all x, y ∈ X;

(4) p(λx) ≤ p(µx) for all λ, µ ∈ K with |λ| ≤ |µ|;
(5) p(λx) ≤ np(x) for allλ ∈ K and n ∈ N with |λ| ≤ n;

(6) |m|−1p(nx) ≤ p(nm−1x) ≤ |n | p(m−1x) for all n, m ∈ Z with m 6= 0.

Remark 1.4. If in particular p is a seminorm, then we can also state that p(λx) =
|λ| p(x) for all λ ∈ K and x ∈ X. Therefore, our present definition of a seminorm
coincides with the usual one.

Theorem 1.5. If p is a preseminorm on X and r, s ∈ R+, then

(1) Bp
r (x) = x + Bp

r (0) for all x ∈ X;

(2) Bp
r (0) is an absorbing, balanced subset of X such that

Bp
r (0) + Bp

s (0) ⊂ Bp
r+s(0).

Remark 1.6. If in particular p is a seminorm, then we can also state that Bp
r (0)

is convex and Bp
r (0) = rBp

1(0). Moreover, the same statements hold for the closed
surroundings B̄p

r .

2. PRESEMINORM GENERATING RELATIONS AND THEIR
BASIC PROPERTIES

Definition 2.1. An order dense subset D of R+ will be called admissible if

(1) r + s ∈ D for all r, s ∈ D;

(2) r − s ∈ D for all r, s ∈ D with s < r.

Remark 2.2. An admissible set D will be called regular if rs ∈ D for all r, s ∈ D.
Moreover, a regular admissible set D will be called normal if r−1 ∈ D for all r ∈ D.
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Clearly, R+ is a normal admissible subset of itself. Moreover, to provide a
proper example for normal admissible sets, we can at once state

Example 2.3. The set Q+ of all positive rational numbers is the smallest normal
admissible subset of R+.

Remark 2.4. In [6], it is shown that the set D+ of all positive dyadic rational
numbers is a regular, but not normal admissible subset of R+.

Definition 2.5. A relation F of an admissible subset DF of R+ onto X will be
called a preseminorm generating relation for X if

(1) F (r) + F (s) ⊂ F (r + s) for all r, s ∈ DF ;

(2) F (r) is an absorbing, balanced subset of X for all r ∈ DF .

Remark 2.6. A preseminorm generating relation F will be called homogeneous
if DF is regular and r F (s) ⊂ F (rs) for all r, s ∈ DF . Moreover, a preseminorm
generating relation F will be called total if DF = R+.

Note that the seminorm generating relations of [5] are total homogeneous
preseminorm generating relations. Moreover, to provide some examples for not
necessarily homogeneous preseminorm generating relations, we can at once state

Example 2.7. If p is a preseminorm on X and Fp and F p are relations on R+ to
X such that

Fp(r) = Bp
r (0) and F p(r) = B̄p

r (0)

for all r ∈ R+, then Fp and F p are total preseminorm generating relations for X
such that Fp ⊂ F p.

Remark 2.8. In [6], it is shown that a sequence A =
(
An

)∞
n=0

of absorbing,
balanced subsets of X naturally gives rise to a preseminorm generating relation FA

of D+ onto X whenever An+1 + An+1 ⊂ An for all n ∈ N ∪ {0}.
The basic properties of preseminorm generating relations can be summarized

in the following

Theorem 2.9. If F is a preseminorm generating relation for X, then

(1) 0 ∈ F (r) for all r ∈ DF ;

(2) F (r) ⊂ F (s) for all r, s ∈ DF with r ≤ s.

(3) λF (r) ⊂ F (nr) for all λ ∈ K, r ∈ DF and n ∈ N with |λ| ≤ n.

Proof. The assertion (1) is already immediate from the fact that F (r) is an
absorbing subset of X for all r ∈ DF .

While, to prove the assertions (2) and (3), it is enough to note only that

F (r) = F (r) + {0} ⊂ F (r) + F (s− r) ⊂ F (s)

for all r, s ∈ D with r < s, and

λF (r) ⊂ nF (r) ⊂
n∑

k=1

F (r) ⊂ F (nr)
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for all λ ∈ K, r ∈ DF and n ∈ N with |λ| ≤ n.

In addition to the assertion (3) of Theorem 2.9, it is also worth proving

Theorem 2.10. If F is a preseminorm generating relation for X, then

nF
(
m−1 r

)
⊂ F

(
nm−1 r

)
⊂ m−1F

(
nr

)
for all n, m ∈ N and r ∈ R+.

Proof. If n ∈ N and r ∈ R+, then by Theorem 2.9 (3) we have

nF (r) ⊂ F (nr),

since F (r) = ∅ whenever r /∈ DF . Hence, by writing n−1 r in place of r, we get
nF (n−1 r) ⊂ F (r). Therefore, we also have

F (n−1 r) ⊂ n−1F (r).

And hence, it is clear that the required inclusions are also true.
Now, as an immediate consequence of Theorem 2.10, we can also state

Corollary 2.11. If F is a preseminorm generating relation for X, then

F (r) =
∞⋃

n=1
nF

(
n−1r

)
and F (r) =

∞⋂
n=1

n−1F
(
nr

)
for all r ∈ R+.

Proof. By Theorem 2.10, we have

nF
(
n−1r

)
⊂ F (r) ⊂ n−1F (nr)

for all n ∈ N and r ∈ R+. And hence, the required equalities are quite obvious.

3. THE MINKOWSKI FUNCTIONALS OF PRESEMINORM
GENERATING RELATIONS

Definition 3.1. If F is a preseminorm generating relation for X, then the function
pF defined by

pF (x) = inf
(
F−1(x)

)
for all x ∈ X, will be called the Minkowski functional or gauge of F.

The appropriateness of the above definition is apparent from the following

Theorem 3.2. If F is a preseminorm generating relation for X, then pF is a
preseminorm on X such that

FpF
(r) ⊂ F (r) ⊂ F pF

(r)

for all r ∈ DF .



22 Árpád Száz

Proof. Assume that x ∈ X and ε > 0. Then, since DF is dense in R+, there exists
an r ∈ DF such that r < ε. Moreover, since F (r) is absorbing in X, there exists
a t ∈ R+ such that x ∈ t F (r). Define δ = t−1, and assume that λ ∈ K such that
|λ| < δ. Then, since |λt| = |λ|t < δt = 1 and F (r) is balanced, we have

λx ∈ λtF (r) ⊂ F (r).

Hence, it follows that r ∈ F−1(λx), and thus

0 ≤ pF (λx) = inf
(
F−1(λx)

)
≤ r < ε.

Therefore, we have lim
λ→0

pF (λx) = 0.

Assume now that λ ∈ K such that |λ| ≤ 1, and moreover x ∈ X and ε > 0.
Then, by the definition of pF , there exists an r ∈ F−1(x) such that r < pF (x) + ε.
Hence, since x ∈ F (r) and F (r) is balanced, it is clear that

λx ∈ λF (r) ⊂ F (r),

and thus r ∈ F−1(λx). Therefore, we also have

pF (λx) = inf
(
F−1(λx)

)
≤ r < pF (x) + ε.

And hence, by letting ε → 0, we can infer that pF (λx) ≤ pF (x).
On the other hand, if x, y ∈ X, then again by the definition of pF for each

ε > 0 there exist r ∈ F−1(x) and s ∈ F−1(y) such that r < pF (x) + ε and
s < pF (y) + ε. Hence, by noticing that x ∈ F (r) and y ∈ F (s), and using the
additivity property of F, we can infer that

x + y ∈ F (r) + F (s) ⊂ F (r + s),

and thus r + s ∈ F−1(x + y). Hence, it is clear that

pF (x + y) = inf
(
F−1(x + y)

)
≤ r + s < pF (x) + pF (y) + 2 ε,

and thus
pF (x + y) ≤ pF (x) + pF (y).

Therefore, pF is a preseminorm on X.

Finally, if r ∈ DF and x ∈ FpF
(r), then by the corresponding definitions we

have x ∈ B
p

F
r (0), and hence pF (x) < r. Therefore, by the definition of pF , there

exists an s ∈ F−1(x) such that s < r. Hence, by the monotonicity property of F, it
is clear that x ∈ F (s) ⊂ F (r). Therefore, FpF

(r) ⊂ F (r).
On the other hand, if r ∈ DF and x ∈ F (r), then r ∈ F−1(x). Therefore, by

the definition of pF , we have pF (x) = inf
(
F−1(x)

)
≤ r. Hence, by the correspond-

ing definitions, it is clear that x ∈ B̄
p

F
r (0) = F pF

(r). Therefore, F (r) ⊂ F pF
(r) is

also true.
Now, as an immediate consequence of Theorem 3.2, we can also state
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Corollary 3.3. If F is a total preseminorm generating relation for X, then

FpF
⊂ F ⊂ F pF

.

Moreover, in addition to Theorem 3.2, we can also easily prove

Theorem 3.4. If p is a preseminorm on X and F is a preseminorm generating
relation for X such that

Fp(r) ⊂ F (r) ⊂ F p(r)

for all r ∈ DF , then p = pF .

Proof. If x ∈ X, then by the definition of pF , for each ε > 0, there exists an
r ∈ F−1(x) such that r < pF (x) + ε. Hence, we can infer that

x ∈ F (r) ⊂ F p(r) = B̄p
r (0).

Therefore, p(x) ≤ r < pF (x) + ε, and thus p(x) ≤ pF (x) is also true.
On the other hand, if p(x) < pF (x), then by the denseness property of DF

there exists an r ∈ DF such that p(x) < r < pF (x). Hence, we can infer that

x ∈ Bp
r (0) = Fp(r) ⊂ F (r).

Therefore, r ∈ F−1(x), and thus pF (x) = inf
(
F−1(x)

)
≤ r < pF (x). This contra-

diction shows that only p(x) = pF (x) can be true.

The F = Fp and F = F p particular cases of Theorem 3.4. immediately give

Corollary 3.5. If p is a preseminorm on X, then

p = pFp
= p F p

.

4. THE KERNELS OF PRESEMINORM GENERATING
RELATIONS

Definition 4.1. If F is a preseminorm generating relation for X, then the set

NF =
⋂

r∈DF

F (r)

will be called the kernel of F.

The appropriateness of the above definition is already apparent from the
following

Theorem 4.2. If p is a preseminorm on X, then

NFp
= N F p

= p−1(0).

Proof. If x ∈ p−1(0), then p(x) = 0. Therefore, for each r ∈ R+, we have
p(x) < r. Hence, by the corresponding definitions, it is clear that x ∈ Bp

r (0) = Fp(r).
Therefore, x ∈ NFp, and thus p−1(0) ⊂ NFp

.
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On the other hand, if x ∈ N F p
, then by the corresponding definitions, for

each r ∈ R+, we have x ∈ F p(r) = B̄p
r (0), and hence p(x) ≤ r. Therefore, p(x) = 0,

and hence x ∈ p−1(0). Consequently, N F p
⊂ p−1(0) is also true.

Now, since
NFp

=
⋂

r∈R+

Fp(r) ⊂
⋂

r∈R+

F p(r) = N F p
,

it clear that the required equalities are also true.
Moreover, concerning the kernels of preseminorm generating relations, we can

also easily prove the following

Theorem 4.3. If F is a preseminorm generating relation for X, then

NF = p−1
F (0).

Proof. By Theorems 4.2 and 3.2, it is clear that

p−1
F (0) = NFpF

=
⋂

r∈R+

FpF
(r) ⊂

⋂
r∈DF

FpF
(r) ⊂

⋂
r∈DF

F (r) = NF .

To prove converse inclusion, suppose now that x ∈ NF and r ∈ R+. Then, by the
denseness property of DF , there exists a u ∈ DF such that u < r. Hence, by using
the assumption x ∈ NF and Theorems 3.2 and 2.9, we can infer that

x ∈ F (u) ⊂ F pF
(u) ⊂ F pF

(r).

Therefore, by Definition 4.1 and Theorem 4.2, we also have x ∈ N F pF
= p−1

F (0).

From Theorem 4.3, since the kernel p−1(0) of a preseminorm p on X is a
linear subspace of X, it is clear that in particular we also have

Corollary 4.4. If F is a preseminorm generating relation for X, then NF is a
linear subspace of X.

Definition 4.5. A preseminorm generating relation F for X will be called sepa-
rating if NF = {0}.

Remark 4.6. Note that, because of 0 ∈ NF , the preseminorm generating relation
F is separating if and only if NF ⊂ {0}.

That is, for each x ∈ X, with x 6= 0, there exists an r ∈ DF such that
x /∈ F (r), while 0 ∈ F (r) automatically holds.

Moreover, as some immediate consequences of Theorems 4.3 and 4.2, we can
also state the following two theorems.

Theorem 4.7. If F is a preseminorm generating relation for X, then the following
assertions are equivalent :

(1) F is separating; (2) pF is a prenorm.

Theorem 4.8. If p is a preseminorm on X, then the following assertions are
equivalent :
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(1) Fp is separating ; (2) F p separating ; (3) p is a prenorm.

By the corresponding definitions, we evidently have the following

Theorem 4.9. If D is an admissible subset of R+ and G is a preseminorm ge-
nerating relation for X such that D ⊂ DG, then F = G |D is also a preseminorm
generating relation for X.

Hint. To check that X = F [D], note that if x ∈ X, then since X = G[DG] there
exists an r ∈ DG such that x ∈ G(r). Moreover, since D is dense in R+, there
exists a v ∈ D such that r < v. Hence, by the monotonicity property of G it is clear
that x ∈ G(r) ⊂ G(v) = F (v).

Moreover, concerning the restrictions of preseminorm generating relations,
we can also easily prove the following

Theorem 4.10. If F and G are preseminorm generating relations for X such that
F = G |DF , then pF = pG.

Proof. In this case, by Theorem 3.2, we have FpG
(r) ⊂ F (r) ⊂ F pG

(r) for all
r ∈ DF . Therefore, by Theorem 3.4, the required equality is also true.

From Theorem 4.10, by Theorem 4.3, it is clear that in particular we also
have

Corollary 4.11. If F and G are preseminorm generating relations for X such that
F = G |DF , then NF = NG.

Remark 4.12. Thus, in particular, F is separating if and only if G is separating.

5. OPERATIONS ON PRESEMINORM GENERATING RELATIONS

Definition 5.1. If F is a preseminorm generating relation for X, and F∗ and F ∗

are relations on R+ to X such that

F∗(r) =
⋃

u<r
F (u) and F ∗(r) =

⋂
r<v∈DF

F (v)

for all r ∈ R+, then the relations F∗ and F ∗ will be called the lower and upper
regularizations of F, respectively.

The importance of the above definition is apparent from the following

Theorem 5.2. If F is a preseminorm generating relation for X, then

F∗ = FpF
and F ∗ = F pF

.

Proof. If r ∈ R+ and x ∈ F∗(r), then by the definition of F∗ there exists a
u ∈ DF such that u < r and x ∈ F (u). Hence, it is clear that u ∈ F−1(x), and
thus pF (x) = inf

(
F−1(x)

)
≤ u < r. Therefore, x ∈ B

p
F

r (0) = FpF
(r), and thus

F∗(r) ⊂ FpF
(r).
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Moreover, if x ∈ FpF
(r), then by the corresponding definitions x ∈ BpF

r (0),
and hence pF (x) < r. Therefore, by the definition of pF , there exists a u ∈
F−1(x) such that u < r. Hence, by noticing that x ∈ F (u), we can see that
x ∈

⋃
u<r F (u) = F∗(r). Therefore, FpF

(r) ⊂ F∗(r) is also true.
On the other hand, if r ∈ R+ and x ∈ X such that x /∈ F pF

(r), then by
the corresponding definitions x /∈ B̄pF

r (0), and hence r < pF (x). Moreover, by the
denseness property of DF , there exists a v ∈ DF such that r < v < pF (x). Hence,
by the definition of pF , it is clear that v /∈ F−1(x), and thus x /∈ F (v). Therefore,
x /∈

⋂
r<v∈DF

F (v) = F ∗(r), and thus F ∗(r) ⊂ F pF
(r).

Moreover, if x ∈ F pF
(r), then by the corresponding definitions x ∈ B̄

p
F

r (0),
and hence pF (x) ≤ r. Therefore, by the definition of pF , for each v ∈ DF , with r < v
there exists a u ∈ F−1(x) such that u < v. Hence, by the monotonicity property
of F, it is clear that x ∈ F (u) ⊂ F (v). Therefore, x ∈

⋂
r<v∈DF

F (v) = F ∗(r), and
thus F pF

(r) ⊂ F ∗(r) is also true.
From Theorem 5.2, by Theorem 3.2, it is clear that in particular we also have

Corollary 5.3. If F is a preseminorm generating relation for X, then F∗ and F ∗

are total preseminorm generating relations for X such that F∗ ⊂ F ∗ and

F∗(r) ⊂ F (r) ⊂ F ∗(r)

for all r ∈ DF .

In addition to Definition 5.1, we may also naturally introduce the following

Definition 5.4. If F is a preseminorm generating relation for X, and F̃ is a
relation on R+ to X such that

F̃ (r) =
⋃

u≤r

F (u)

for all r ∈ R+, then the relation F̃ will be called the natural extension of F.

The appropriateness of the above definition is apparent from the following

Theorem 5.5. If F is a preseminorm generating relation for X, then F̃ is a
preseminorm generating relation for X such that

F̃ (r) = F (r) for r ∈ DF and F̃ (r) = F∗(r) for r ∈ R+ \DF .

Hint. To prove the required additivity property of F̃ , let r, s ∈ R+, and assume
x ∈ F̃ (r) and y ∈ F̃ (s). Then, by the definition of F̃ , there exist u, v ∈ DF , with
u ≤ r and v ≤ s, such that x ∈ F (u) and y ∈ F (v). Hence, by the additivity
property of F, it follows that x + y ∈ F (u) + F (v) ⊂ F (u + v). Now, since
u + v ∈ DF such that u + v ≤ r + s, it is clear that x + y ∈ F̃ (r + s). Therefore,
F̃ (r) + F̃ (s) ⊂ F̃ (r + s).

From Theorem 5.5, by Corollary 5.3, it is clear that in particular we also have
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Corollary 5.6. If F is a preseminorm generating relation for X, then

F∗ ⊂ F̃ ⊂ F ∗.

Concerning the operations given in Definitions 5.1 and 5.4, we can also easily
prove the following two theorems.

Theorem 5.7. If F is a preseminorm generating relation for X, then

pF = pF∗ = p
F̃

= pF∗ .

Proof. By Theorem 5.2 and Corollary 5.6, we have FpF
= F∗ ⊂ F̃ ⊂ F ∗ = F pF .

And hence, by Theorem 3.4, it is clear that the required equalities are also true.
From Theorem 5.7, by Theorem 4.3, it is clear that in particular we also have

Corollary 5.8. If F is a preseminorm generating relation for X, then

NF = NF∗ = N
F̃

= NF∗ .

Theorem 5.9. If F and G are preseminorm generating relations for X such that
F = G |DF , then F∗ = G∗ and F ∗ = G∗.

Proof. In this case, by Theorem 4.10, we have pF = pG. Hence, by Theorem 5.2,
it is clear that the required equalities are also true.

From Theorem 5.9, by Theorem 5.5, it is clear that in particular we also have

Corollary 5.10. If F is a preseminorm generating relation for X, then

F∗ =
(
F̃

)
∗ and F ∗ =

(
F̃

)∗
.

6. LOWER AND UPPER REGULAR PRESEMINORM
GENERATING RELATIONS

Definition 6.1. A preseminorm generating relation F for X will be called lower
(upper) regular if F (r) = F∗(r)

(
F (r) = F ∗(r)

)
for all r ∈ DF .

Remark 6.2. Note that, by Corollary 5.3, the preseminorm generating relation
F is lower (upper) regular if and only if F (r) ⊂ F∗(r)

(
F ∗(r) ⊂ F (r)

)
for all

r ∈ DF .

Moreover, as some immediate consequences of Theorem 5.2, we can at once
state the following two theorems.

Theorem 6.3. If F is a preseminorm generating relation for X, then the following
assertions are equivalent :

(1) F is lower regular ; (2) F (r) = FpF
(r), for all r ∈ DF .
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Theorem 6.4. If F is a preseminorm generating relation for X, then the following
assertions are equivalent :

(1) F is upper regular ; (2) F (r) = F pF
(r), for all r ∈ DF .

Furthermore, from Theorem 5.2, by using Corollary 3.5, we can also at once
get the following two theorems.

Theorem 6.5. If p is a preseminorm on X, then

(1) Fp is lower regular ; (2) F p is upper regular.

Proof. By Corollary 3.5 and Theorem 5.2, we have

Fp = FpFp
=

(
Fp

)
∗ and F p = F p

F p
=

(
F p

)∗
.

Hence, by Theorem 5.2, it is clear that in particular we also have

Corollary 6.6. If F is a preseminorm generating relation for X, then

(1) F∗ is lower regular ; (2) F ∗ is upper regular.

Theorem 6.7. If p is a preseminorm on X, then

Fp =
(
F p

)
∗ and F p =

(
Fp

)∗
.

Proof. By Corollary 3.5 and Theorem 5.2, we also have

Fp = Fp
F p

=
(
F p

)
∗ and F p = F pFp

=
(
Fp

)∗
.

Hence, by Theorem 5.2, it is clear that in particular we also have

Corollary 6.8. If F is a preseminorm generating relation for X, then

F∗ =
(
F ∗

)
∗ and F ∗ =

(
F∗

)∗
.

Now, in addition to Theorem 6.5, we can also easily prove the following

Theorem 6.9. If p is a preseminorm on X, then the following assertions are
equivalent :

(1) Fp is upper regular ; (2) F p is lower regular ;

(3) Fp = F p; (4) p = 0; (5) Fp = R+ ×X; (6) F p = R+ ×X.

Proof. If the assertions (1) and (2) hold, then by Definition 6.1 and Theorem 6.7
we have Fp =

(
Fp

)∗ = F p and F p =
(
F p

)
∗ = Fp, respectively. Therefore, the

implications (1) ⇒ (3) and (2) ⇒ (3) are true.
Moreover, if the assertion (4) does not hold, then there exists an x ∈ X such

that p(x) 6= 0. Now, by defining r = p(x), we can see that r ∈ R+ such that
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x ∈ B̄p
r (0) = F p(r), but x /∈ Bp

r (0) = Fp(0). Therefore, the assertion (3) does not
also hold. Thus, the implication (3) ⇒ (4) is also true.

On the other hand, if the assertion (4) holds, then we evidently have Fp(r) =
B0

r (r) = X, and thus the assertion (5) also holds. Moreover, if the assertion (5)
holds, then since Fp ⊂ F p it is clear that the assertion (6), and thus the assertion
(3) also holds.

Finally, to complete the proof, we note that if the assertion (3) holds, then by
Theorem 6.5 it is clear that the assertion (1) also holds. Moreover, if the assertion
(6) holds, then by the corresponding definitions it is clear that the assertion (2)
also holds.

From Theorem 6.9, by Theorem 5.2, it is clear that in particular we also have

Corollary 6.10. If F is a preseminorm generating relation for X, then the follow-
ing assertions are equivalent :

(1) F∗ is upper regular ; (2) F ∗ is lower regular ;

(3) F∗ = F ∗; (4) pF = 0; (5) F∗ = R+ ×X; (6) F ∗ = R+ ×X;

(7) F = DF ×X.

Hint. To prove the equivalence of the assertions (6) and (7), note that if r ∈ DF ,
then by the denseness property of R+ there exists an s ∈ R+ such that s < r.
Therefore, if the assertion (6) holds, then we have X = F ∗(s) ⊂ F (r), and hence
F (r) = X.

Finally, we note that as an immediate consequence of Theorem 5.9, we can
also state

Theorem 6.11. If F and G are preseminorm generating relations for X such that
F = G |DF and G is lower (upper) regular, then F is also lower (upper) regular.

Hence, by Theorem 5.5, it is clear that in particular we also have

Corollary 6.12. If F is a preseminorm generating relation for X such that F̃ is
lower (upper) regular, then F is also lower (upper) regular.

However, the latter assertion is of no particular importance since we also have
the following

Theorem 6.13. A preseminorm generating relation F for X, then the following
assertions are equivalent :

(1) F is lower regular ; (2) F∗ = F̃ ; (3) F̃ is lower regular.

Proof. To check this, note that the implications (1) ⇒ (2) ⇒ (3) ⇒ (1) follow
immediately from Theorem 5.5 and Corollaries 6.6 and 6.12, respectively.
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7. SEMINORM GENERATING RELATIONS AND THEIR BASIC
PROPERTIES

Definition 7.1. A relation F of a regular admissible subset DF , of R+ onto X
will be called a seminorm generating relation for X if

(1) F (r) + F (s) ⊂ F (r + s) for all r, s ∈ DF ;

(2) λF (r) ⊂ F (tr) for all λ ∈ K and r, t ∈ DF with |λ| ≤ t.

For a preliminary illustration of seminorm generating relations, we can at
once state

Example 7.2. If p is a seminorm on X, then Fp and F p are seminorm generating
relations for X.

Moreover, to reveal the relationship between seminorm and preseminorm ge-
nerating relations, we can easily prove

Theorem 7.3. If F is a relation of a regular admissible subset DF of R+ to X,
then the following assertions are equivalent :

(1) F is a seminorm generating relation for X;

(2) F is a homogeneous preseminorm generating relation for X.

Proof. If the assertion (2) holds, then by the assumed balancedness and homoge-
nity property of F it is clear that

λF (r) ⊂ tF (r) ⊂ F (tr)

for all λ ∈ K and r, t ∈ DF with |λ | ≤ t. Therefore, the assertion (1) also holds.
To prove the converse implication, suppose now that the assertion (1) holds,

and let r ∈ DF and x ∈ X. Then, since X = F [DF ], there exists an s ∈ DF such
that x ∈ F (s). Moreover, since DF is dense in R+, there exists a t ∈ DF such
that t < rs−1, and thus ts < r. Hence, by the assumed homogenity and additivity
properties of F, it is clear that

tx ∈ tF (s) ⊂ F (ts) = F (ts) + 0 F (r − ts) ⊂ F (ts) + F (r − ts) ⊂ F (r).

Therefore, x ∈ t−1F (r), and thus F (r) is an absorbing subset of X. Now, since the
balancedness property of F (r) is immediate from the assumed homogenity property
of F, is clear that the assertion (2) also holds.

From Theorem 7.3, by Theorem 4.9, it is clear that in particular we also have

Corollary 7.4. If D is a regular admissible subset of R+ and G is a seminorm
generating relation for X, then F = G |D is also a seminorm generating relation
for X.

Moreover, as an immediate consequence of the corresponding definitions, we
can also state
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Theorem 7.5. If F is a seminorm generating relation for X such that 1 ∈ DF ,
then F is DF –convex.

Proof. By the corresponding properties of DF and F, we have

tF (r) + (1− t) F (s) ⊂ F (tr) + F ((1− t)s) ⊂ F (tr + (1− t)s)

for all r, s, t ∈ DF with t < 1.

The r = s particular case of the above inclusion immediately gives

Corollary 7.6. If F is a seminorm generating relation for X such that 1 ∈ DF ,
then F (r) is DF –convex for all r ∈ DF .

Now, as useful characterization of seminorm generating relations, we can also
easily prove

Theorem 7.7. If F is a relation of a normal admissible subset DF of R+ to X,
then the following assertions are equivalent :

(1) F is a seminorm generating relation for X;

(2) there exists an absorbing, balanced, DF –convex subset A of X such that F (r) =
rA for all r ∈ DF .

Proof. If the assertion (1) holds and r, s ∈ DF , then by the homogenity property
of F we have

rF (s) ⊂ F (rs).

Hence, by writing r−1 in place of r, and rs in place of s, we can see that

r−1F (rs) ⊂ F (s).

This implies that F (rs) ⊂ rF (s). Therefore, the equality

F (rs) = rF (s)

is also true. Hence, under the notation A = F (1), it follows that

F (r) = rF (1) = rA.

Moreover, from Theorem 7.3 and Corollary 7.6, we can see that A is an absorbing,
balanced, DF –convex subset of X. Therefore, the assertion (2) also holds.

The proof of converse implication (2) ⇒ (1) is much more obvious. Moreover,
it shows, in particular, that the following assertion is also true.

Corollary 7.8. If F is a seminorm generating relation for X such that DF is
normal admissible subset of R+, then

F (rs) = rF (s) and F (r + s) = F (r) + F (s)

for all r, s ∈ DF .
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The appropriateness of Definition 7.1, is also apparent from the following

Theorem 7.9. If F is a seminorm generating relation for X, then pF is a semi-
norm on X.

Proof. Because of Theorems 7.3 and 3.2, we need only prove the required ho-
mogenity property of pF . For this, assume that λ ∈ K and x ∈ X, and moreover
ε > 0. Then, by the denseness property of DF , there exists a t ∈ DF such that
|λ| < t < |λ|+ε. Moreover, by the definition of pF , there exists an r ∈ F−1(x) such
that r < pF (x) + ε. Hence, by noticing that x ∈ F (r) and using the homogenity
property of F, we can infer that

λx ∈ λF (r) ⊂ F (tr),

and thus tr ∈ F−1(λx). Now, it is clear that

pF (λx) = inf
(
F−1(λx)

)
≤ tr <

(
|λ|+ ε

)(
pF (x) + ε

)
.

And hence, by letting ε → 0, we can infer that p(λx) ≤ |λ|pF (x).

From Theorem 7.9, by Theorem 5.2, it is clear that in particular we also have

Corollary 7.10. If F is a seminorm generating relation for X, then F∗ and F ∗

are also seminorm generating relations for X.

8. A FEW ILLUSTRATING EXAMPLES

The following example shows, in particular, that the converse of the second
assertion of Corollary 6.12 and a hoped for counterpart of Theorem 5.5 for seminorm
generating relations are not true.

Example 8.1. If F is a relation on Q+ to R such that

F (r) = [−r, r]

for all r ∈ Q+, then F is an upper, but not lower regular, separating seminorm
generating relation for R such that F̃ is neither homogeneous nor upper or lower
regular.

Note that the function p, defined by p(x) = |x| for all x ∈ R, is a norm on
R such that F = F p |Q+. Therefore, by Example 7.2 and Corollary 7.4, F is a
seminorm generating relation for X. Moreover, by Theorem 4.8 and Remark 4.12,
F is separating.

On the other hand, by Theorems 5.9, 6.5 and 6.7, we have

F ∗ =
(
F p |Q+

)∗ =
(
F p

)∗ = F p and F∗ =
(
F p |Q+

)
∗ =

(
F p

)
∗ = Fp.

Therefore,
F ∗(r) = F p(r) = [−r, r] = F (r),
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and
F∗(r) = Fp(r) = ]− r, r [ 6= [−r, r] = F (r)

for all r ∈ Q+. And thus, F is upper, but not lower regular.
Moreover, from the definition of F and the equality F∗ = Fp, by Theorem

5.5, it is clear that

F̃ (r) = [−r, r] if r ∈ Q+ and F̃ (r) =]− r, r [ if r ∈ R+ \Q+.

Therefore,
F̃ (r) = ]− r, r [ 6= [−r, r] = r[−1, 1] = r F̃ (1)

for all r ∈ R+ \Q+. And thus, by Theorems 7.7 and 7.3, F̃ is not homogeneous.
Finally, from Corollary 5.10 and the above equalities, it is clear that(

F̃
)
∗(r) = F∗(r) = Fp(r) =]− r, r [ 6= [−r, r] = F̃ (r)

for all r ∈ Q+, and(
F̃

)∗(r) = F ∗(r) = F p(r) = [−r, r] 6= ]− r, r [ = F̃ (r)

for all r ∈ R+ \Q+. And thus, F̃ is neither lower nor upper regular.

Remark 8.2. If F and G are preseminorm generating relations for X such that
F = G |DF , then in contrast to Theorem 5.9 we can only state that F̃ ⊂ G̃ such
that F̃ (r) = G̃(r) for r ∈ DF ∪ (R+ \ D). Namely, by the following example, the
equality of F̃ and G̃ on DG \DF need not be true.

Example 8.3. If F is as in Example 8.1 and G is a relation on R+ to R such that

G(r) = [−r, r]

for all r ∈ R+, then F and G are upper, but not lower regular, separating seminorm
generating relations for X, with F = G |Q+, such that F̃ (r) 6= G̃(r) for all r ∈
R+ \Q+.

To see the latter assertion, note that by Example 8.1

F̃ (r) = [−r, r] if r ∈ Q+ and F̃ (r) =]− r, r [ if r ∈ R+ \Q+.

While, by Theorem 5.5, G̃(r) = [−r, r] for all r ∈ R+.

Remark 8.4. If F is a preseminorm generating relation for X, and F̃ is a relation
on R+ to X such that

F̃ (r) =
⋂

r≤v∈DF

F (v)

for all r ∈ R+, then in contrast to Corollary 5.3 and Theorem 5.5 we can only state
that F̃ is an absorbing, balanced valued relation of R+ onto X such that

F̃ (r) = F (r) for r ∈ DF and F̃ (r) = F ∗(r) for r ∈ R+ \DF ,
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and thus F∗ ⊂ F̃ ⊂ F̃ ⊂ F ∗. Namely, by the following example, the relation F̃
need not have the additivity property of preseminorm generating relations.

Example 8.5. If F is a relation on Q+ to R such that

F (r) =]− r, r [

for all r ∈ Q+, then F is a lower, but not upper regular, separating seminorm
generating relation for R such that

F̃ (r) + F̃ (s) 6⊂ F̃ (r + s)

for all r, s ∈ R+ \Q+ with r + s ∈ Q+.

To prove the latter assertion, note that now, for the norm p defined in
Example 8.1, we have F = Fp |Q+. Moreover, by Theorems 5.9 and 6.7, we now
have

F ∗ =
(
Fp |Q+

)∗ =
(
Fp

)∗ = F p.

And thus, by Remark 8.4, we also have

F̃ (r) = ]− r, r [ if r ∈ Q+ and F̃ (r) = [−r, r] if r ∈ R+ \Q+.

Therefore, if r, s ∈ R+ \Q+ such that r + s ∈ Q+, then

F̃ (r) + F̃ (s) = [−r, r] + [−s, s] = [−(r − s), r + s],

while F̃ (r + s) = ]− (r − s), r + s [ .
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