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A CLASS OF C* SLOWLY VARYING
FUNCTIONS

Slavko Simié

For a given slowly varying function L we find explicitely another slowly varying
function g = g(L(z)) such that g € C°° and g(z) ~ L(z),  — oo. A remarkable
property of g is possibility of analytic continuation on the right complex half-

plane.

1. INTRODUCTION

In this article we treat a subclass of KARAMATA’s slowly varying functions
(svf) with analytic properties. Such are, for example:

1
In”z, n°(Inxz), a,beR; exp(lnz)®, 0<c<1; exp ne , e.t.c.
Inlnx

An excellent survey of characterisation, representation etc., connected with
regular variation is given in [1] and [2]; therefore, we suppose that the reader is
familliar with it. In general, despite their name, the behaviour of slowly varying
functions shows great irregularities. For example (BINGHAM [1], p.16), for svf
L(z) = exp ((Inz)/3 cos (Inz)'/3) :

liminf L(z) = 0; limsup L(x) = +oo.

—00 T—00

Moreover, (ApDAMOVIC [3], [4]) for any a,b (a < b) from the segment [0, o0]
there is a continuous svf L(z), such that

liminf L(x) = a; limsup L(z) = b.

xr—00 T—00
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Also, other analytical aspects as monotonicity, differentiability etc., are in
general, out of question.

Anyway, since the definition of svfs includes asymptotic relations near infinity,
their behaviour on finite segments are of secondary importance; therefore, we could
always ”fix” them in a way to be locally bounded and O(1) when x — 07.

The class of such svfs is called Loc (L). It is evident that their asymptotic
properties at infinity are not disturbed.

From the other side, theorems as:

A. (DE BRULIN, 1959): For every suf L(x) there exist another suf Ly (z) € C™
such that L(z) ~ L(z), & — oo; or

B. (ApAMOVIC, 1966): For every suf L(x) and arbitrary monotone increasing,
unbounded sequence (x,,), there exist suf Lo(x) € C*° such that Lo(x) ~ L(z), = —
oo and Lo(z,) = L(zy,) for all large n;
shows that, for sufficiently large values of variable, “bad” svfs could be replaced by
the analytic ones with desirable properties.

The only problem with analytic svfs Lo and L; in cited theorems is that
due to their construction (see [1], p.14, 15), they can not be applied to concrete
problems.

Hence, our task in this article is to find out explicitly, for a given svf L(x),
another svf g = g(L(z)) such that g € C*° and g(z) ~ L(z), z — oo.

A remarkable property of our svf g is the possibility of analytic continuation
on the right complex half-plane without loosing the regularity mode, i.e.

g(ze’) ~ g(z) ~ L(z), «— oo, || <7/2.

2. RESULTS

Proposition 1. For any suf L € Loc (L), define L, as

L.(2):=2z [e *L(t)dt, z € Z, |argz| < 7/2.

Then
Lu(2) ~ Lo(l2) ~ L(1/| 2]), |2] = 0%, Jarg 2] < 7/2

More precisely
Re L.(z) ~ L(1/|z|); ITm L.(z) = o(L(1/|z|); |z| — 0T, |argz| < m/2.

This proposition shows that L.(z),z € Rt is an C™ svf (as a LAPLACE
transform of a positive function L) and L,(z) is it’s analytic continuation on the
right complex half-plane.
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For the proof we need a well-known result:

Lemma 1. ([1] p.199, ALJANCIC) If for some 6 > 0, [ "|k(t)|dt is convergent
0
for =6 <n <4 and L € Loc (L), then

k(0 L(at) di ~ L(z) [ k(£)dt, 2 — oo,
0

o0
If [k(t)dt =0, then
0

k(t)L(xt)dt = o(L(z)), = — oo.
We shall prove the second part of the Proposition 1.
Proof. Let z = re'®, |z| =r, argz = ¢ € (—7/2,7/2). Since
L.(2) = Ly (re'?) = re'® joe*”emL(t) dt=r Te*” s gio=trsing) 1 (4)
0 0
we have
ReL.(z)=r

e8¢ cos (¢ — trsin @) L(t) dt;

ImL,(z) =7 [ e " %sin(¢ — trsin ¢)L(t) dt.

Substituting ¢r = v and applying Lemma 1 (with § = 1/2), 1/r — +oc0 , we

get
Re L, () — Zfoe—uww cos (& — usin &) L(u/r) du
~ L(1/r) :foe*msd’ cos (¢ — usin¢)du, r — 07,
Tm L. (z) = Zfoe—uww sin(¢ — wsin ) L(u/r)du
~ L(1/7) ;[oe*““%in(d) —using)du, r— 07, |¢| < 7/2.

Integrals on the right exists (cos ¢ > 0) and doesn’t depend on the parameter
¢. First is equal to 1 and second to 0, i.e. the Proposition 1 is proved.

In the next theorem we show that the complex-valued function L,(z) is play-
ing a role of a svf on the right complex half-plane.
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Proposition 2. For any ¢ € Zt from right complex half-plane,

L,(c2)

I.0) — 1, |z| =0T, |argz| < 7/2 — |argc|.

Proof. Since arg(cz) = argc + arg z, follows
larg (¢z)| < |argc| + |argz| < 7/2.

Applying the Proposition 1, we get

Li(c2) ~ L(1/|ez]) = L (é : Iil> ~ L(1))2]) ~ Lo (2), |2] — 0.

Now we could define a complex regularly varying function (rvf) R(z) of index
« in the usual manner, as

(A) R(z) == (1/2)*L.(2), |argz| <7/2, a € R

(in definition of z* we allways take the branch which is positive for positive z).

Then
R(2)

R([z])

An alternative way is given in the next Proposition.

~ ploarg z |Z|—>0+

Proposition 3. Let
1

(B) REGE) =

e TNt dt, a >0, |argz| < 7/2.

Then
R (2) ~ (1/2)°Lu(2); 2] — 0%,

i.e. Rﬁa)(z) is regularly varying with index o > 0.

Proof. We have (z = rew) :

Re R(a) . a f e—treosé (oo (tT‘ sin ¢) to‘_lL(t) dt,
0
Im R("‘)( f eI s 9 sin(tr sin ¢)t* L L(¢) dt.
(@) o
Substituting tr = u and applying Lemma 1 (which is valid for § = a/2), we
get
. L(1/r) 1 o : _
Re R{)(2) ~ r<<£) a e cos(using)u du,
ImR(Q)(z) ~ — L{/r) . i j.foe_ucos‘i’sin(usin (b)ua_ldu
: T(a) g ’
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when 7 — 0.
For the evaluation of integrals on the right side, we use (see [5], p.144):

 com b
e " 08l o5 (57 sin ab) ds = o8 I'(1/a),

. b
e €08 ab i1 (% sin ab) ds — ﬂ I(1/a), a>0, |ab| < 7/2.

o g 03

Substituting s = u'/*, a = 1/a, b= agp, we get
e~ P2~ cos (usin ¢) du = I'(a) cos ag,

e~ 489y~ Lgin(usin @) du = ['(a)sinag, a >0, |¢| < 7/2,

o g O3

i.e.

R (z) = Re R (2) +iIm R\ (2)
L(1/r)
T-OL

(cosag —isinag) ~ (1/2)*L.(2), |z| — 0T, |argz| < 7/2.

Now we give an asymptotic estimation of the n-th derivative rvf of R(a)( ),
which itself represents an analogy with well-known class SR, (smoothly varying
functions, [1], p.44).

Proposition 4.

o (RS:J‘) (Z)) (n)

~(=D"afa+1)---(a+n—1); |z =0T, a>0 neN.
O

Proof. This is a simple consequence of the previous proposition, i.e.

(_1)71 Ooe—zt a—1+n
o) { t L(t)dt
o L(a+n) L.z

(R (2)"™ =

|zl — 0T, |argz| < 7/2, a > 0.

An alternative to L.(z) is svf L*(z) defined as

z [e *L(1/t)dt, L € Loc(L).
0
In the same way, we have

L*(z) € C*°; L*(z) ~ L(|z|), |2| — <.
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All propositions 1-4 are also valid for L*(z) with 0" and oo reversed.
Proposition 5. If a(s) — 0o, s — 00; a(s) ~ b(s), s — oo, then
L*(a(s)) ~ L*(b(s)), s — oo.
Proof. From the assumed condition it follows
a(s) =b(s)(1+0(1)), s— oo.
Therefore, for large enough s > sg, we could find € = () such that

b(s)(1 —¢€) < a(s) <b(s)(1+¢), s> so.

Now
L*(a(s)) = a(s) fe_“(s)tL(l/t) dt <b(s)(1+4¢) }Oe—b(s)(l_a)tL(l/t) dt
0 0
S e RACCUEE)]
and, analogously:
L*(a(s)) > Ly (b(s)(1+¢€)), s> so.

14+¢
Hence, for fixed £ we have

L(a(s)) _1e . L(b(s)(1-e) 1+

I
TP T (s) T 1oesme Le(b(s)  1-¢
and
L* — L*(b(s)(1 —
lim inf (a S)) > 1-¢ lim ( ) +€)) = ! 6.
s=oo L*(b(s)) ~ 14es—oe  L*(b(s)) l+e
Therefore
1-¢ Sliminfﬂg lim ﬂglimsup (a(s)) < 1+E.
L4e = s—oo L*(b(s)) ~ s—oo L*(b(s)) s—oo L*(b(s)) ~ 1—¢
Since € is arbitrary small, the conclusion follows.
We could define a regularly varying function R, of index « in the usual way
as

R (x):=z“L*(z), a €R.
We have
R:(x) € C*°; R!(x) ~x%L(x), x— oo, L€ Loc(L).
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Now we prove that R is smoothly varying in the sense defined in ([1], p.44).

Proposition 6.

" (Rz (x)) (n)

Proof. Since

(L (@) = [(=1)"t"e " L(1/t)dt, n € N,
0

we get

" (RZ(UU))(") =z" (33(”1 (L*ix)>)(n) = x";(:ﬂ”l)(k) (L;(x)>(n_k) (z)

= et [ (30 (7) o Data = 1)+ 2 - 00 ) L)

k=0

Substituting xt = u and applying Lemma 1, we obtain

~ (—l)nn'.’L’aL(I) . (1 +Z(_1)k (a+ 1)Oé(a - 2)'(a+2 — k))7 T 0.
k=1 ’

ala—1)---(a—14n)
n!
Since *L(z) ~ R} (z), x — oo, validity of the statement follows.

The expression in parentheses is equal to (—1)"

As a consequence we get the following

Proposition 7. (RZ(QC))(”) =0 (%) , where absolute constant in O does not
depend on .
Even more important consequence is that our rvf R}, is an explicit realisation

of a function g from the statement ([1], p.45):

Smooth variation theorem. For every ruf f there is smoothly varying function
g such that
g(x) ~ f(z), x— oo.

For an illustration, we apply our concept of C'*° svf to investigate the asymp-

totic behaviour of
Z cZ(Z)zk, keN, z€Z,
k<n
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where ¢} is a regularly varying sequence generated by rvf R’ (z), i.e

¢ i =k°L* (k) =k“L}, a <0, ke N,

¢ ~n?L(n) =c,, n— o0,

for any svf L (here L € Loc L is self-evident).
We shall show that on different sets of complex variable z there is different
asymptotics of the given sum.

Lemma. The sequence (c}) of index —(a+1) have the following integral represen-

tation:
* LZ F —kt
Ch = Tyt = Ofe u(a,t) dt,

where u(a,t) is given by
t —1
w(a,t) = 1/T(a { (t—s)*"'L(1/s)ds (a>0),

L(1/t) (a=0).

Proof. It follows
L L*(k) 1 1

* ko _ A oo—kt .oo—k'ta—l
G T T e F(a)ge L(1/t)dt Ofe t*=tdt

_ F(la) /Ooekt (J‘ (t — s)alLu/s)ds) dt, a>0,
0

according to the well-known convolution of the LAPLACE transform.
Now we could formulate Theorem A. For |z+1|>1, z€Z, a >0:

Ly L
];Lk—: (Z) 2P~ n—z 1+1/2)*(z+ 1", n— co.

Proof. From the cited Lemma we obtain an integral representation of

o L)y e e (Y e ke
k=0 k=0
0 n

— —T n 7zkdioofx 1 —z\n g

= [e u(a,z)z (k)(ze ) :U—Ofe u(a, z)(1 + ze™%)" dz.
0 k=0

Define &, :=In(14n~'/?), n € N. Then

= (?-ﬁ-;{o)(') =I5+ L.
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Since x +— |z 4+ 1|e™® + 1 — e~ " is monotone decreasing for |z + 1| > 1, we have
fe“" Y14 ze™*)dz =0 (fez (a,z) |1+ ze~ |”d1:>
(fe Tula, z)(|z +1]e™™ +1—e_x)”dx>
= O((z+1|e§” +1—ebn ”706 u(a, dx>
0
(o1 B2 ) -ofrn-552252)
Estimating 17, we use

e’ —1 x
In(1 = O(z?), = €(0,&,), 1] > 1.
2 (14557 ) = 25 406, 2 06, 41

Now,

—fe”” Y1+ ze ") da

= (z+1)" 7}3%(@, ) exp (”ln <ez (1 i e:+11)>>dz
0

—_ 7exu(a, x)exp(”( —r+ ﬁ +O0(x )))dx

&n
=(z+1)" /e_xu(a, sr:)eacp( — anxl) exp (O(nz?)) dz.
0

Since e’ =1+ O(te'), t € (0,+00) and, for z € (0,&,)
na? = 0(ng?) = O(nln®*(1 +n"%)) = 0(0(1)) = O(1),

it follows
L =(z+1)" f" Yoz () 4

0

&n ,
+n(z+1)" f e*"”u(a,gg)e*"zw/(zﬂ)o(xz)eO(nx ) 4
0
= (z +1)" j.foe_xu(a, x) —nzax/(z+1) qp — Z +1)" f e~ e~ et/ (241) g
0

&n
+O<n|z +1" [ z?e™"u(a, x)e_"”/(zﬂ) dx) = I+ 13+ I14.
0
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1
Since for |z+1| > 1 we have that Re i :1_%
z+1 |z + 1]

>0, z€Z,
applying cited Propositions, we obtain

Lo = (z+ 1) [ e Wn=/GHDzy (o 0) da
0

L*(1+nz/(2+1)) niarr L*(n)
(1+nz/(z+ 1))a+1 S (nz)ett’

x z
L] = O 1" [ e *u(a, (f R )d
[I13] (z +1] 5{ e “u(a,x) exp neRe —— x)

=(z+1)"

—¢ ( T+ 1re R [ e tu(a, x) dm)
0

O(|z + 1" (1 +n~/2)nRe zil) = O<|z +1|reVnRe ﬁ),

1) dx)

and, similarly,

&n
Iy = O<n|z + 1" [ 2®e “u(a, x) exp ( — naRe —
0 z+

O<n|z + 1|n f xQe—(H—nRe ) da:)
0
d? /L~
=0|(nlz+1] —( (S)> (according to the Proposition 7)
d82 sotl [s=14+nRe

=1

L*
) :O(|z+1|“ a(f;)).
[s=1+nRe ;%7] n

L*(s)
Sa+3

= O<n|z—|—1|”

Finally, we have:

*

L
fala,2) =1 + Iy ~ L1y ~ (24 1)"Fet! (nz)ZH’ n—oo, |z+1|>1, a>0.

It is not difficult to see that the identity
Ly (m\ ok _
Z ﬁ (k) Z =nz- fnfl(aaz)7
k<n
implies the statement from the Theorem A.

Next, we compare our results with the well-known test (M. VUILLEUMIER,
[6]) for slow variation, i.e.

Proposition M. Necessary and sufficient conditions for validity of

(o ]
ankLk ~ ALn, n — oo,
k=1
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for any slowly varying sequence (Ly), are
(1) X lankl K" =0(");  (2) X<y lank| k77 =0(7"),
k>n -

for some n > 0;
(3) lirrln > k<n Gnk = A.

We apply Theorem A to the cited Proposition in the following way.
Let us define a triangular matrix (a,i) by

a Zk

n\ n
LA 1U>1,1<k<n),
wm={ WEErme (11 1sksn
0 (k> n).
Then,
n® n\ 1
Z Gnk = n Z ( ) Ta © o
k<n (Z+ 1) k<n k k
so, using Theorem A with L} = 1, we see that the condition (3) of the Proposition
M is satisfied with A = (1+1/2)*, a > 0.
Validity of the condition (1) is obvious since matrix (an) is triangular. Since,
according to Theorem A,

1 n
WS a7~ (1 (ELE) s,

= |z + 1]

it is evident that the condition (2) is satisfied only for 2 € R™; hence, we could
formulate next theorem:

Theorem B. Asymptotic relation

l y,
S A (M 1 e 1> L a2 0, o,
k<n

is valid

a) for every slowly varying sequence (£x) if and only if z € RT;

b) for any other z € Z if s.v. sequence ({y) is from the C* class L*; (which
show its extraordinarity).

It is worthy to mention here that on or inside the circle |z + 1| = 1 our sum
have entirely different behaviour, i.e. (see [7]):

For |z+1| <1, 2#0, a >0,

a—1

L m In“n n®n
];L ﬁ (k) Zk = —F(a T 1) — F(a) (h’l(*Z) —+ Y + 0(1)), n — oo,

where v is EULER’s constant.
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