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THE LAPLACE TRANSFORM
OF THE FOURTH MOMENT
OF THE ZETA-FUNCTION

Aleksandar Ivić

The Laplace transform of
∣∣ζ (

1
2

+ ix
)∣∣ is investigated, for which a precise ex-

pression is obtained, valid in a certain region in the complex plane. The

method of proof is based on complex integration and spectral theory of the

non-Euclidean Laplacian.

1. INTRODUCTION

Laplace transforms play an important rôle in analytic number theory. Of
special interest in the theory of the Riemann zeta-function ζ(s) are the Laplace
transforms

(1.1) Lk(s) :=
∫ ∞

0

∣∣∣∣ ζ

(
1
2

+ ix

)∣∣∣∣
2k

e−sx dx (k ∈ N, <e s > 0).

E. C. Titchmarsh’s well-known monograph [20, Chapter 7] gives a discussion of
Lk(s) when s = σ is real and σ → 0+, especially detailed in the cases k = 1 and
k = 2. Indeed, a classical result of H. Kober [14] says that, as σ → 0+,

(1.2) L1(2σ) =
γ − log (4πσ)

2 sin σ
+

N∑
n=0

cnσn + O(σN+1)

for any given integer N ≥ 1, where the cn’s are effectively computable constants
and γ = 0.577 . . . is Euler’s constant. For complex values of s the function L1(s)

1991 Mathematics Subject Classification: 11M06, 11F72, 11F66.
Key words and phrases: Riemann zeta-function, Laplace transform, complex integration,

spectral theory

41



42 Aleksandar Ivić

was studied by F. V. Atkinson [1], and more recently by M. Jutila [13], who
noted that Atkinson’s argument gives

(1.3) L1(s) = −ie
1
2 is

(
log (2π)− γ +

(π

2
− s

)
i

)

+ 2πe−
1
2 is

∞∑
n=1

d(n) exp (−2πine−is) + λ1(s)

in the strip 0 < <e s < π, where the function λ1(s) is holomorphic in the strip
|<e s| < π. Moreover, in any strip |<e s| ≤ θ with 0 < θ < π, we have

λ1(s) ¿θ (|s|+ 1)−1.

In [12] M. Jutila gave a discussion on the application of Laplace transforms to
the evaluation of sums of coefficients of certain Dirichlet series.

F. V. Atkinson [2] obtained the asymptotic formula

(1.4) L2(σ) =
1
σ

(
A log4 1

σ
+ B log3 1

σ
+ C log2 1

σ
+ D log

1
σ

+ E

)
+ λ2(σ),

where σ → 0+,

A =
1

2π2
, B = π−2

(
2 log (2π)− 6 γ + 24 ζ ′(2)π−2

)

and

(1.5) λ2(σ) ¿ε

(
1
σ

) 13
14+ε

.

He also indicated how, by the use of estimates for Kloosterman sums, one can
improve the exponent 13

14 in (1.5) to 8
9 . This is of historical interest, since it is

one of the first instances of application of Kloosterman sums to analytic number
theory. Atkinson in fact showed that (σ = <e s > 0)

(1.6) L2(s) = 4πe−
1
2 s

∞∑
n=1

d4(n)K0(4πi
√

n e−
1
2 s) + φ(s),

where d4(n) is the divisor function generated by ζ4(s), K0 is the Bessel function,
and the series in (1.6) as well as φ(s) are both analytic in the region |s| < π. When
s = σ → 0+ one can use the asymptotic formula

K0(z) =
1
2
√

πz−1/2e−z
(
1− 8z−1 + O(|z|−2)

) (
| arg z| < θ <

3π

2
, |z| ≥ 1

)

and then, by delicate analysis, one can deduce (1.4)–(1.5) from (1.6).
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The author [5] gave explicit, albeit complicated expressions for the remaining
coefficients C,D and E in (1.4). More importantly, he applied a result on the fourth
moment of |ζ( 1

2 + it)|, obtained jointly with Y. Motohashi [9], [11] (see also [4]),
to establish that

(1.7) λ2(σ) ¿ σ−1/2 (σ → 0+),

and this is where the matter presently rests.

For k ≥ 3 not much is known about Lk(s), even when s = σ → 0+. This is
not surprising, since not much is known about upper bounds for

Ik(T ) :=
∫ T

0

∣∣∣∣ ζ

(
1
2

+ it

)∣∣∣∣
2k

dt (k ≥ 3, k ∈ N).

For a discsussion on Ik(T ) the reader is referred to the author’s monographs [3]
and [4]. One trivially has

(1.8) Ik(T ) ≤ e

∫ ∞

0

∣∣∣∣ ζ

(
1
2

+ it

)∣∣∣∣
2k

e−t/T dt = eLk

(
1
T

)
.

Thus any nontrivial bound of the form

(1.9) Lk(σ) ¿ε

(
1
σ

)ck+ε

(σ → 0+, ck ≥ 1)

gives, in view of (1.8) (σ = 1/T ), the bound

(1.10) Ik(T ) ¿ε T ck+ε.

Conversely, if (1.10) holds, then we obtain (1.9) from the identity

Lk

(
1
T

)
=

1
T

∫ ∞

0

Ik(t) e−t/T dt,

which is easily established by integration by parts.

2. SPECTRAL THEORY AND THE LAPLACE
TRANSFORM OF |ζ( 1

2 + ix)|

The purpose of this paper is to consider L2(s), where s is a complex variable,
and to prove a result analogous to (1.3), valid in a certain region in C. We shall not
use Atkinson’s method and try to elaborate on (1.6). Our main tools are powerful
methods from spectral theory, by which recently much advance has been made in
connection with I2(T ). For a competent and extensive account of spectral theory
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the reader is referred to Y. Motohashi’s monograph [19]. Some of the relevant
papers on I2(T ) are [6]–[1], [14]–[18] and [21].

We begin by stating briefly the necessary notation involving the spectral the-
ory of the non-Euclidean Laplacian. As usual {λj = κ 2

j + 1
4} ∪ {0} will denote the

discrete spectrum of the non-Euclidean Laplacian acting on SL(2,Z) –automorphic
forms, and αj = |ρj(1)|2(coshπκj)−1, where ρj(1) is the first Fourier coefficient
of the Maass wave form corresponding to the eigenvalue λj to which the Hecke
series Hj(s) is attached. We note that

(2.1)
∑

κj≤K

αjH
3

j (1/2) ¿ K2 logC K (C > 0).

Our result is the following

Theorem. Let 0 ≤ φ < π/2 be given. Then for 0 < |s| ≤ 1 and | arg s| ≤ φ we
have

(2.2) L2(s) =
1
s

(
A log4 1

s
+ B log3 1

s
+ C log2 1

s
+ D log

1
s

+ E

)

+s−1/2

( ∞∑

j=1

αjH
3

j (1/2)
(
s−iκj R(κj)Γ(κj) + siκj R(−κj)Γ(−κj)

))
+ G2(s),

where

(2.3) R(y) :=
√

π

2

(
2−iy Γ( 1

4 − i
2y)

Γ( 1
4 + i

2y)

)3

Γ(2iy) cosh(πy)

and in the above region G2(s) is a regular function satisfying (C > 0 is a suitable
constant)

(2.4) G2(s) ¿ |s|−1/2 exp

(
− C log (|s|−1 + 20)(

log log (|s|−1 + 20)
)2/3(

log log log (|s|−1 + 20)
)1/3

)
.

Remark 1. The constants A, B, C, D, E in (2.2) are the same ones as in (1.4).

Remark 2. From Stirling’s formula for the gamma-function it follows that
R(κj) ¿ κ

−1/2
j . In view of (2.1) this means that the series in (2.2) is absolutely

convergent and uniformly bounded in s when s = σ is real. Therefore, when
s = σ → 0+, (2.2) gives a refinement of (1.7).

Remark 3. From (1.4) and (1.7) it transpires that λ(σ) is an error term when
0 < σ < 1. For this reason we considered the values 0 < |s| ≤ 1 in (2.2), although
one could treat the case |s| > 1 as well.

Remark 4. From (2.2) and elementary properties of the Laplace transform one
can easily obtain the Laplace transform of

E2(T ) :=
∫ T

0

∣∣∣∣ ζ

(
1
2

+ it

)∣∣∣∣
4

dt− TP4(log T ), P4(x) =
4∑

j=0

ajx
j ,
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where a4 = 1/(2π2) (for the evaluation of the remaining aj ’s, see [5]).

3. PROOF OF THE THEOREM

Note first that in the integral defining L2(s) it suffices consider only the range
of integration [1, ∞ ] , since the range [0, 1] trivially contributes ¿ 1. We start
from the well-known integral

(3.1) e−z =
1

2πi

∫

(c)

Γ(s)z−s ds (<e z > 0, c > 0),

and the function

Z2(w) :=
∫ ∞

1

∣∣∣∣ ζ

(
1
2

+ it

)∣∣∣∣
4

t−w dt (<e w > 1),

introduced and studied by Y. Motohashi [17], [19]. Here as usual

∫

(σ)

= lim
T→∞

∫ σ+iT

σ−iT

.

Y. Motohashi showed that Z2(s) has meromorphic continuation over C. In the
half-plane σ = <e s > 0 it has the following singularities: the pole s = 1 of order 5,

simple poles at s = 1
2 ± iκj

(
κj =

√
λj − 1

4

)
and poles at s = 1

2 ρ, where ρ denotes

complex zeros of ζ(s). The residue of Z2(s) at s = 1
2 + iκh equals

R0(κh) =
√

π

2

(
2−iκh

Γ
(

1
4 − i

2κh

)

Γ
(

1
4 + i

2κh

)
)3

Γ(2iκh) cosh(πκh)
∑

κj=κh

αjH
3

j

(1
2

)
,

and the residue at s = 1
2 − iκh equals R0(κh).

From (3.1) we have, for c > 1, 0 < |s| ≤ 1 and | arg s| ≤ φ,

(3.2)

∫ ∞

1

∣∣∣∣ ζ

(
1
2

+ ix

)∣∣∣∣
4

e−sx dx

=
∫ ∞

1

∣∣∣∣ ζ

(
1
2

+ ix

)∣∣∣∣
4( 1

2πi

∫

(c)

Γ(w)(sx)−w dw

)
dx

=
1

2πi

∫

(c)

Γ(w) s−wZ2(w) dw.

In (3.2) we shift the line of integration to the contour L (w = u + iv) consisting of
the curves

(3.3) u =
1
2
− C log−2/3 |v| ( log log |v|)−1/3 (|v| ≥ v0 > 0, C > 0)
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and the segment

u = u0, u0 =
1
2
− C log−2/3 |v0|

(
log log |v0|

)−1/3
, |v| ≤ v0.

Namely ζ(s) 6= 0 (see e.g., [3, Chapter 6]) for

σ ≥ 1−A (log t)−2/3(log log t)−1/3 (s = σ + it, t ≥ t0 > 0, A > 0)

and a suitable constant A. The function Z2(w) will be regular on L, since the poles
w = 1

2 ρ, ζ(ρ) = 0) lie to the left of L. For any given η > 0 one has

(3.4) Z2(w) ¿ eη|=m w| (w ∈ L)

if C in (3.3) is taken sufficiently small. This follows easily from the proof of Lemma
1 of [7], which shows that the order of Z2(w) is of the order given by (3.4) if
<e w > 0 and w stays away from the poles of Z2(w). In the forthcoming work
[8] it is even shown that in the above region Z2(w) is of polynomial growth in |v|,
which is more than what is required for our present purpose. Thus by the residue
theorem we obtain from (3.2)

(3.5)
∫ ∞

1

∣∣∣∣ ζ

(
1
2

+ ix

)∣∣∣∣
4

e−sx dx =
∑

Res Γ(w)s−wZ2(w)

+
1

2πi

∫

L
Γ(w)s−wZ2(w) dw.

There are residues at w = 1 and at w = 1
2 ± κj . The contribution from w = 1 is

(see (1.4))
1
s

(
A log4 1

s
+ B log3 1

s
+ C log2 1

s
+ D log

1
s

+ E

)
,

while the residues at w = 1
2 ± κj yield

s−1/2

( ∞∑

j=1

αjH
3

j

(1
2

) (
s−iκj R(κj)Γ(κj) + siκj R(−κj)Γ(−κj)

)
)

,

where R(y) is defined by (2.3).
Write ∫

L
Γ(w)s−wZ2(w) dw = I1 + I2,

say, where in I1 we have |v| ≤ V , and in I2 we have |v| > V , where V (À 1) is a
parameter to be chosen. Since

|s−w| = |s|−uev arg s (| arg s| ≤ φ), Γ(w) ¿ |v|u− 1
2 e−

π
2 |v| (v À 1),

then setting δ(x) = C log−2/3 x (log log x)1/3 we obtain

I1 ¿ |s|−u0 +
∫ V

v0

|s|−( 1
2−δ(v))e−( π

2−φ)v dv ¿ |s|−u0 + |s|−( 1
2−δ(V )).
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Similarly we have

I2 ¿ |s|− 1
2

∫ ∞

V

e−( π
2−φ)v dv = |s|− 1

2
e−( π

2−φ)V

π
2 − φ

.

Finally choosing
V = C1 log (|s|−1 + 20)

with suitable C1 > 0 we obtain (C2 > 0)
∫

L
Γ(w)s−wZ2(w) dw

¿ |s|−1/2 exp
(
− C2 log (|s|−1 + 20)

(
log log (|s|−1 + 20)

)2/3( log log log (|s|−1 + 20)
)1/3

)
,

which in view of (3.5) completes the proof of the Theorem.
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