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LOG-CONVEX MATRIX FUNCTIONS

Jaspal Singh Aujla, Mandeep Singh Rawla, H. L. Vasudeva

Let f be a positive real-valued function de�ned on an interval I � R. The

function f is said to be log-convex if log f is convex on I. In this note, we

study an analogue of log-convexity for matrix functions and discuss the gamma

function in this setting. The notion of log-convexity on the positive cone of

positive continuous functions is also discussed. A criterion for log-convexity

for each of the classes of matrix functions and the functions de�ned on the

positive cone of positive continuous functions is obtained.

1. Introduction. Let f be a positive function de�ned on an interval I � R. Then

f is called log-convex or multiplicatively convex if for x; y 2 I and 0 � � � 1, the

inequality

(1) log f
�
�x+ (1� �)y

�
� � log f(x) + (1� �) log f(y);

or equivalently,

(2) f
�
�x + (1� �)y

�
�
�
f(x)

���
f(y)

�1��

holds. For properties of such functions, the reader may refer to Roberts and

Varberg [16].

From now on I will denote the interval (0;1) and we shall take our function

f : I ! I to be continuous. This mild restriction on f shall allow us to state

an analogue of log-convexity (see (3) and (4) below) for matrix functions with the

special choice of �, namely, � = 1=2. For an n � n positive de�nite hermitian

matrix A; f(A) is de�ned by familiar functional calculi. The above de�nition of

log-convexity when extended to matrix functions could be independently described

by any of the following two inequalities:

(3) f

�
A+B

2

�
� f(A)#f(B):
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(4) log f

�
A+B

2

�
� log f(A) + log f(B)

2
;

where A and B are positive de�nite hermitian matrices of order n; # denotes

geometric mean. We shall call a function f : I ! I; satisfying (3) (resp. (4)) for

n� n positive de�nite hermitian matrices A and B, multiplicatively matrix (resp.

log matrix) convex on I of order n. Note that the class of multiplicatively matrix

convex (resp. log matrix convex) functions of order 1 in the sence of (3) (resp.

(4)) is precisely the class of log-convex functions. It is also clear, using the matrix

monotonicity of log function (see Ando [2]), that (3) implies (4) in the case of

commuting matrices. In section 2, we study the inequality (3). It is shown that

the class of functions satisfying (3) is a convex cone.

A typical example of usual log convex function is the Gamma function. Ma-

trix valued Gamma function has been studied by a variety of authors including K.

J. Heuvers, D. Moak [11] and K. I. Gross, W. J. III. Holman [9]. Whereas

the authors in [11] seek solutions of the functional equation f(z + 1) = zf(z) for
matrix valued functions. K. I. Gross and W. J. III. Holman [9] study the

properties of the matrix valued Gamma function generalising its usual integral rep-

resentation. For a detailed study of matrix valued special functions, the reader

may refer to [17]. We seek to characterise log-convex matrix functions de�ned

on commuting matrices satisfying the functional equation f(x + 1) = xf(x) and
the normalising condition f(1) = 1. Though restricted in scope, the treatment is

satisfying as it establishes a complete analogue of the treatment in [3].

In section 3, the inequality (4) is studied. Here we provide a characterisa-

tion of log-convex functions in terms of Frechet derivatives. In the �nal section

log-convex functions on the Banach space of continuous functions on a compact

Housdorff space are studied and an easily veri�able criterion of log-convexity in

the above said space is given.

2. In this section, we shall consider the inequality (3), namely,

f

�
A+B

2

�
� f(A)#f(B);

where A and B are positive de�nite hermitian matrices and f is a positive con-

tinuous function de�ned on I. Since geometric mean is less than or equal to the

arithmetic mean, Ando [1], it follows that if f satis�es (3), it is mid-matrix convex

and hence matrix convex, using continuity of f; Kwong [14]. That the class of

functions satisfying (3) is strictly contained in the class of matrix convex functions

follows on observing that the function f(x) = x; x 2 (0;1); is matrix convex of

order n for every positive integer n but it does not satisfy inequality (3) even in

the case n = 1. Our �rst proposition shows that the class of functions satisfying

(3) is fairly rich. Indeed, we have the following proposition:
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Proposition 2.1. Let f : I ! I be operator concave. Then 1=f satis�es the

inequality (3).

Proof. For A;B positive de�nite hermitian matrices, we have

f

�
A+B

2

�
� f(A) + f(B)

2
� f(A)#f(B);

using [1, Corollary I.2.4]. Consequently,�
f

�
A+B

2

���1
�
�
f(A)#f(B)

��1
=
�
f(A)

��1
#
�
f(B)

��1
;

using that f(x) = �x�1 is matrix monotone on I of order n for every positive

integer n and [1, Corollary I.2.1 (vii)] respectively.

Theorem 2.2. (i) Let f; g : I! I satisfy inequality (3) and � � 0; then f + g and

�f satisfy (3):

(ii) Let ffngn�1; where fn : I ! I; be a sequence of functions satisfying (3)

and let fn ! f; and f is a positive function; then f satis�es the inequality (3):

(iii) Let g satisfy (3) and f be matrix monotone and positive linear, then f Æg
satis�es (3).

Proof. (i) For A;B positive de�nite hermitian matrices, we have

(f + g)

�
A+B

2

�
= f

�
A+B

2

�
+ g

�
A+B

2

�
�
�
f(A)#f(B)

�
+
�
g(A)#g(B)

�
� (f + g)(A)#(f + g)(B);

using [11, Theorem 3.5 (I`)].

That �f; � � 0; satis�es (3) whenever f does, follows on using [1, Corollary

I.2.1 (ii)].

(ii) For A;B positive de�nite hermitian matrices,

fn

�
A+B

2

�
� fn(A)#fn(B) (n = 1; 2; : : :)

holds. On taking limits as n!1, we obtain the desired result.

(iii) For A;B positive de�nite hermitian matrices,

f Æ g
�
A+B

2

�
= f

�
g

�
A+B

2

��
� f

�
g(A)#g(B)

�
� f

�
g(A)

�
#f
�
g(B)

�
= f Æ g(A)#f Æ g(B);
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the last two inequalities follow since f is matrix monotone and positive linear.

Theorem 2.3. Let f; g : I! I be functions satisfying the inequality (3): Let h(A) =
f(A) � g(A); where A is a positive de�nite hermitian matrix, be the Hadamard

product of f(A) and g(A). Then h satis�es the inequality (3):

Proof. For A;B positive de�nite hermitian matrices, we have

h

�
A+ B

2

�
= f

�
A+B

2

�
� g
�
A+B

2

�
�
�
f(A)#f(B)

�
�
�
g(A)#g(B)

�
�
�
f(A) � g(A)

�
#
�
f(B) � g(B)

�
= h(A)#h(B);

using [2, Corollary 8.1] and [4, Theorem 4.1].

For x � 0; the gamma function � has been characterised as one which satis�es

the functional equation �(x + 1) = x�(x); �(1) = 1 and is log-convex. For an

account of this characterisation, the reader may refer to Artin [3]. In what follows,

we give a characterisation of the gamma function for commuting matrices of order

n; n 2 N, is arbitrary. The proof is a suitable adaption of the one given in Artin's

text [3]. We �rst show that

(i) �(A+ I) = A�(A); (ii) �(I) = I; (iii) �

�
A+B

2

�
� �(A)#�(B);

where A;B are positive de�nite hermitian matrices of order n satisfying AB =

BA and I denotes the identity matrix. Indeed, if A =
nP

i=1

�iEi is the spectral

resolution of A, where for i = 1; 2; : : : ; n; �i are the eigen values of A and Ei are

the corresponding projections, then A+ I =
nP

i=1

(�i + 1)Ei: Consequently,

�(A+ I) =
nP

i=1

�(�i + 1)Ei =
nP

i=1

�i�(�i)Ei =
� nP

i=1

�iEi

�� nP
i=1

�(�i)Ei

�
= A�(A):

That �(I) = I is obvious. We next assume that A and B commute. Then B =
nP

i=1

�iEi [12, Theorem 3.2.4.2]. Consequently,

�

�
A+B

2

�
=

nX
i=1

�

�
�i + �i

2

�
Ei �

nX
i=1

�
�(�i)

�1=2�
�(�i)

�1=2
Ei

=

�
nP

i=1

�
�(�i)

�1=2
Ei

��
nP

i=1

�
�(�i)

�1=2
Ei

�
= �(A)#�(B):

Theorem 2.4. If a function f satis�es the following three conditions :
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(i) The domain of de�nition of f is I and f satis�es the inequality (3) for

commuting A and B;

(ii) f(A + I) = Af(A); where A is a positive de�nite hermitian matrix of

order n;

(iii) f(I) = I; where I denotes the identity matrix,

then

log f(A) = lim
n!1

�
A log(nI) + log(n!I)�

nP
k=0

log(A+ kI)

�
:

Proof. For an f satisfying the hypothesis,

f(nI) = f
�
(n� 1)I + I

�
= (n� 1)f

�
(n� 1)I

�
= � � � = (n� 1)!I;

using (ii) and (iii) of the hypothesis. Assume that 0 < A � I and n is an integer

� 2. Using monotonicity of the log function [2], it follows, on using (i) of the

hypothesis, that

log f

�
A+B

2

�
� log f(A) + log f(B)

2
;

since AB = BA. Since (n� 1)I � nI � A+ nI � (n+1)I; and log f is convex, we

have

�
�
log f

�
(n� 1)I

�
� log f(nI)

�
� A�1=2

�
log f(A+ nI)� log f(nI)

�
A�1=2

� log f
�
(n+ 1)I

�
� log f(nI);

using [5, Theorem 3.2]. Consequently,

log
�
(n� 1)I

�
� A�1=2

�
log f(A+ nI)� log f(nI)

�
A�1=2 � log (nI);

or

A log
�
(n� 1)I

�
+ log

�
(n� 1)!I

�
� log f(A+ nI) � A log(nI) + log

�
(n� 1)!I

�
:

Since

f(A+ nI) =
�
A+ (n� 1)I

��
A+ (n� 2)I

�
� � � (A+ I)Af(A);

the above inequality yields

A log
�
(n� 1)I

�
+ log

�
(n� 1)!I

�
�

n�1P
k=0

log(A+ kI)

� log f(A)

� A log(nI) + log
�
(n� 1)!I

�
�

n�1P
k=0

log(A+ kI)

= A log(nI) + log(n!I) + log(A+ nI)�
nP

k=0

log(A+ kI)� log(nI):



24 Jaspal Singh Aujla, Mandeep Singh Rawla, H. L. Vasudeva

Since the above inequality holds for all n � 2; we can replace n by (n + 1) on the

left side. Thus

A log(nI) + log(n!I)�
nP

k=0

log(A+ kI)

� log f(A)

� A log(nI) + log(n!I)�
nP

k=0

log(A+ kI) + log(I +A=n):

Since log(I +A=n)! 0 as n!1; we obtain

log f(A) = lim
n!1

�
A log(nI) + log(n!I)�

nP
k=0

log(A+ kI)
�
:

3. We next turn our attention to the inequality (4), i.e.,

log f

�
A+B

2

�
� log f(A) + log f(B)

2
;

where A and B are positive de�nite hermitian matrices of order n: In this case, we

have the following theorem, whose proof is easy and is, therefore, not included.

Theorem 3.1. The class of functions f : I ! I satisfying (4) is closed under

multiplication and taking of limits, provided the limits exist and are positive.

Let X and Y be real Banach spaces. Let f be a map from an open subset

E of the space X into the space Y . We say that f is di�erentiable at u 2 E if there

exists a linear map Df(u) from X to Y satisfying

kf(u+ x)� f(u)�Df(u)(x)k = o(kxk)
for all x. The linear map is called the derivative of f at u. We have

Df(u)(x) =
d

dt

���
t=0

f(u+ tx) (x 2 X ):

If f is di�erentiable at all u 2 E, we get a map u! Df(u) from E in B(X ;Y), the
bounded linear operators from X to Y . The derivative of this map at u, if it exists,
is called the second derivative of f at u and is denoted by D2f(u). Observe that

D2f(u) is an element of B
�
X ;B(X ;Y)

�
: This latter space can be identi�ed with the

space of bounded bilinear maps from X into Y equiped with the norm

k�k = inf
�
� : k�(x1; x2)k � �kx1k kx2k

	
:

In case X = Y = B(H); bounded linear maps on a Hilbert spaceH and f(A) = A�1;
where A is in the set of invertible operators,

Df(A)(B) = �A�1BA�1
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and

D2f(A)(B1; B2) = A�1B1A
�1B2A

�1 +A�1B2A
�1B1A

�1

for all B;B1; B2 in B(H):

The following analogue of the standard calculus results shall be used in the

sequel. Let X ;Y ;Z be Banach spaces, let g be a map from X to Y ; and f a map

from Y to Z : Let � = f Æ g. Then for all x; x1; x2 2 X ;
D�(x)(x1) =

�
Df
�
g(x)

�
ÆDg(x)

�
(x1);

D2�(x)(x1; x2) = D2f
�
g(x)

��
Dg(x)(x1);Dg(x)(x2)

�
+Df

�
g(x)

��
D2g(x)(x1; x2)

�
:

For the above de�nitions, results and other related material, the reader may refer

to Flett [8].

Let f : (0;1) ! (0;1) and A be a positive de�nite Hermitian matrix with

spectral resolution A =
nP

i=1

�iEi. Then f(A) =
nP

i=1

f(�i)Ei =
Pn

i=1 aiEi, where

ai = f(�i); i = 1; 2; : : : ; n and
�
� � f(A)

��1
=

nP
i=1

(� � ai)
�1Ei: We shall use the

symbols X;Y; Z for Df(A)(B1); Df(A)(B2) and D2f(A)(B1; B2) respectively.

Proposition 3.2. (i)
0

�1

�
��f(A)

��1
Z
�
��f(A)

��1
d� =

�
f(A)

��1=2
Z
�
f(A)

��1=2
+
X
i6=j

�
log aj � log ai

aj � ai
� 1p

aiaj

�
EiZEj :

(ii)
0

�1

�
� � f(A)

��1
X
�
�� f(A)

��1
Y
�
�� f(A)

��1
d�

= � 1

2

�
f(A)

��1=2
X
�
f(A)

��1
Y
�
f(A)

��1=2
+

X
i=j 6=k

 
log ak � log ai

(ak � ai)2
� 1

ai(ak � ai)
+

1

2a
3=2
i ak

!
EiXEiY Ek

+
X

i=k 6=j

�
log aj � log ai

(aj � ai)2
� 1

ai(aj � ai)
+

1

2aiaj

�
EiXEjY Ei

+
X

i6=j=k

 
log ai � log aj

(ai � aj)2
� 1

aj(ai � aj)
+

1

2a
1=2
i a

3=2
j

!
EiXEjY Ej

+
X

i6=j 6=k

 
log ai

(ai � aj)(ai � ak)
+

log aj

(aj � ai)(aj � ak)

+
log ak

(ak � ai)(ak � aj)
+

1

2a
1=2
i aja

1=2
k

!
EiXEjY Ek:
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Proof. (i)
0

�1

�
�� f(A)

��1
Z
�
�� f(A)

��1
d� =

0

�1

X
i;j

d�

(�� ai)(�� aj)
EiZEj

=
X
i

0

�1

d�

(�� ai)2
EiZEi +

X
i6=j

0

�1

d�

(� � ai)(� � aj)
EiZEj

=
X
i

1

ai
EiZEi +

X
i6=j

log ai � log aj

ai � aj
EiZEj

=

�P
i

a
�1=2
i Ei

�
Z

�P
i

a
�1=2
i Ei

�
+
X
i6=j

�
log ai � log aj

ai � aj
� a

�1=2
i a

�1=2
j

�
EiZEj

=
�
f(A)

��1=2
Z
�
f(A)

��1=2
+
X
i6=j

� log ai � log aj

ai � aj
� 1p

aiaj

�
EiZEj :

(ii)
0

�1

�
�� f(A)

��1
X
�
�� f(A)

��1
Y
�
�� f(A)

��1
d�

=

0

�1

X
i;j;k

d�

(�� ai)(�� aj)(�� ak)
EiXEjY Ek

=

X
i

0

�1

d�

(�� ai)3
EiXEiY Ei +

X
i=j 6=k

0

�1

d�

(�� ai)2(�� ak)
EiXEiY Ek

+

X
i=k 6=j

0

�1

d�

(�� ai)2(�� aj)
EiXEjY Ei +

X
i6=j=k

0

�1

d�

(�� ai)(�� aj)2
EiXEjY Ej

+

X
i6=j 6=k

0

�1

d�

(�� ai)(�� aj)(�� ak)
EiXEjY Ek:

Now

0

�1

d�

(�� ai)3
= � 1

2a 2
i

;

0

�1

d�

(� � ai)2(�� ak)
=

0

�1

1

(ai � ak)2

�
� 1

�� ai
+

ai � ak

(�� ai)2
+

1

�� ak

�
d�

=
log ak � log ai

(ak � ai)2
� 1

ai(ak � ai)

and

0

�1

dd�

(�� ai)(� � aj)(�� ak)
=

0

�1

�
1

(ai � aj)(ai � ak)

1

(�� ai)

+
1

(aj � ai)(aj � ak)

1

(�� aj)
+

1

(ak � ai)(ak � aj)

1

(�� ak)

�
d�:
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Observe that

0

�1

1

(ai � aj)(ai � ak)

�
1

�� ai
� �

�2 + 1

�
d� =

log ai

(ai � aj)(ai � ak)
:

It then follows that

0

�1

d�

(� � ai)(� � aj)(� � ak)
=

log ai

(ai � aj)(ai � ak)
+

log aj

(aj � ai)(aj � ak)

+
log ak

(ak � ai)(ak � aj)
:

Hence

0

�1

�
��

�
f(A)

��1
X
�
�� f(A)

��1
Y
�
�� f(A)

��1
d� = � 1

2a 2
i

EiXEiY Ei

+
X

i=j 6=k

�
log ak � log ai

(ak � ai)2
� 1

ai(ak � ai)

�
EiXEiY Ek

+
X

i=k 6=j

�
log aj � log ai

(aj � ai)2
� 1

ai(aj � ai)

�
EiXEjY Ei

+
X

i6=j=k

�
log ai � log aj

(ai � aj)2
� 1

aj(ai � aj)

�
EiXEjY Ej

+
X

i6=j 6=k

�
log ai

(ai � aj)(ai � ak)
+

log aj

(aj � ai)(aj � ak)

+
log ak

(ak � ai)(ak � aj)

�
EiXEjY Ek

= �1

2

�
f(A)

��1=2
X
�
f(A)

��1
Y
�
f(A)

��1=2
X

i=j 6=k

�
log ak � log ai

(ak � ai)2
� 1

ai(ak � ai)
+

1

2a
3=2
i ak

�
EiXEiY Ek

+
X

i=k 6=j

�
log aj � log ai

(aj � ai)2
� 1

ai(aj � ai)
+

1

2aiaj

�
EiXEjY Ei

+
X

i6=j=k

�
log ai � log aj

(ai � aj)2
� 1

aj(ai � aj)
+

1

2a
1=2
i a

3=2
j

�
EiXEjY Ej

+
X

i6=j 6=k

�
log ai

(ai � aj)(ai � ak)
+

log aj

(aj � ai)(aj � ak)

+
log ak

(ak � ai)(ak � aj)
+

1

2a
1=2
i aja

1=2
k

�
EiXEjY Ek:
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Theorem 3.3. Let f : (0;1) ! (0;1) be a twice continuously di�erentiable
function. Then f is log matrix convex function of order n i��

f(A)
�
�1=2

Z
�
f(A)

�
�1=2

�

1

2

�
f(A)

�
�1=2

X
�
f(A)

�
�1

Y
�
f(A)

�
�1=2

�

1

2

�
f(A)

�
�1=2

Y
�
f(A)

�
�1

X
�
f(A)

�
�1=2

+

X
i=j 6=k

�
log ak � log ai

(ak � ai)2
�

1

ai(ak � ai)
+

1

2a
3=2

i ak

�
(EiXEiY Ek +EiY EiXEk)

+

X
i=k 6=j

�
log aj � log ai

(aj � ai)2
�

1

ai(aj � ai)
+

1

2aiaj

�
(EiXEjY Ei +EiY EjXEi)

+

X
i6=j=k

�
log ai � log aj

(ai � aj)2
�

1

ai(ai � aj)
+

1

2a
1=2

i a
3=2

j

�
EiXEjY Ej +EiY EjXEj)

+

X
i6=j 6=k

�
log ai

(ai � aj)(ai � ak)
+

log aj

(aj � ak)(aj � ai)
+

log ak

(ak � ai)(ak � aj)

+
1

2a
1=2

i aja
1=2

k

�
(EiXEjY Ek +EiY EjXEk)

is positive de�nite matrix for all positive de�nite A and for all B1 and B2:

Proof. Observe that for x > 0,

logx =

0

�1

�
1

�� x
� �

�2 + 1

�
d�;

(see page 27, [7]). Consequently,

log f(A) =

0

�1

�
1

�I � f(A)
� �

�2 + 1
I

�
d�;

where A is a positive de�nite Hermitian matrix of order n. Since f is twice di�er-

entiable, log f(A) is twice Frechet di�erentiable [6, Theorem 3.1]. Moreover,

D log f(A)(B) =

0

�1

�
�I � f(A)

��1
Df(A)(B)

�
�I � f(A)

��1
d�

for all B 2 B(H); and

D2 log f(A)(B1; B2) =
0

�1

�
�I � f(A)

��1
D2f(A)(B1; B2)

�
�I � f(A)

��1
d�

+
0

�1

�
�I � f(A)

��1�
Df(A)(B2)

�
�I � f(A)

��1
Df(A)(B1)

+Df(A)(B1)
�
�I � f(A)

��1
Df(A)(B2)

��
�I � f(A)

��1
d�
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for all B1; B2 2 B(H).

Since f is log matrix convex i� log f is matrix convex, the result follows on

using Proposition 3.2 and convexity criterion [6, Theorem 3.2].

4. In this section we discuss the notion of log-convexity in the real Banach space

X = C(M); the space of continuous real-valued functions on a compactHausdorff

space M. Let C denotes the cone of positive functions in X and let C� be the set
of non-negative regular Borel measures on M. A function f : C ! C satisfying

the inequality

f
�
(1� �)u+ �v

�
�
�
f(u)

�1���
f(v)

��
for all u; v 2 C and for all �, 0 � � � 1; is said to be log-convex. The following

proposition is helpful in constructing examples of functions which satisfy the above

said inequality. The motivation for the statement and the proof is the Proposition

3.1 [15].

Proposition 4.1. (i) Let f : C ! C be a mapping. Then f is log-convex i� for

every w� 2 C� and for every pair u; v 2 C, the map � ! w�
�
f
�
(1 � �)u + �v

��
is

log-convex.

(ii) If f : C ! C and g : C ! C are log-convex then so is f + g; and if, in

addition, f is order preserving, f Æ g is also log-convex.

Proof. (i) Suppose f is log-convex. For u; v 2 C, 0 � � � 1; consider the function
h : [0; 1]! R+, where R+ = fx 2 R : x � 0g; de�ned by

h(�) = w�
�
f
�
(1� �)u+ �v

��
:

We wish to show that h(�) is log-convex. Indeed, for 0 � �0 � �1; 0 � t � 1, and

�t = (1� t)�0 + t�1;

h(�t) = w�
�
f
��
1� ((1� t)�0 + t�1)

�
u+ ((1� t)�0 + t�1)v

��
= w�

�
f
�
(1� t)

�
(1� �0)u+ �0v

�
+ t
�
(1� �1)u+ �1v

���
� w�

��
f
�
(1� �0)u+ �0v

��1�t�
f
�
(1� �1)u+ �1v

��t�
�
�
w�
�
f
�
(1� �0)u+ �0v

���1�t�
w�
�
f
�
(1� �1)u+ �1v

���t
;

using the fact that w� is a non-negative functional and H�older's inequality [10,

page 140].

Conversely, suppose that h(�) de�ned above is log-convex for all choices of

u; v 2 C and w� 2 C�: Choose w�(z) = z(m) for a �xed m 2M, one �nds that�
f
�
(1� �)u+ �v

��
(m) �

�
f(u)

�1��
(m)

�
f(v)

��
(m):
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Since m 2 M is arbitrary, the result follows.

(ii) Let h(z) = (f + g)(z); z 2 C. Then

h
�
(1� �)u+ �v

�
= f

�
(1� �)u+ �v

�
+ g
�
(1� �)u+ �v

�
�
�
f(u)

�1���
f(v)

��
+
�
g(u)

�1���
g(v)

��
�
�
f(u) + g(u)

�1���
f(v) + g(v)

��
for all pairs u; v 2 C and 0 � � � 1:

If, in addition, f is order preserving, then

f
�
g
�
(1� �)u+ �v

��
� f

��
g(u)

�1���
g(v)

���
� f

�
(1� �)g(u) + �g(v)

�
�

�
f
�
g(u)

��1���
f
�
g(v)

���
for all pairs u; v 2 C and 0 � � � 1:

Theorem 4.2. Let f : C ! C be a twice di�erentiable map. Then f is log-convex

i�

f(u)D2f(u)(v1; v2)�Df(u)(v1)Df(u)(v2) � 0:

Proof. As in the proof of Theorem 3.3, we have

log f(u) =

0

�1

�
1

�� f(u)
� �

�2 + 1

�
d�:

Then

D log f(u)(v) =

0

�1

�
�� f(u)

��1
Df(u)(v1)

�
�� f(u)

��1
d�;

and

D2 log f(u)(v1; v2) =

0

�1

�
�� f(u)

��1
D2f(u)(v1; v2)

�
�� f(u)

��1
d�

+

0

�1

�
�� f(u)

��1�
Df(u)(v2)

�
�� f(u)

��1
Df(u)(v1)

+ Df(u)(v1)
�
�� f(u)

��1
Df(u)(v2)

��
�� f(u)

��1
d�;

on evaluating the integrals as in the case of real variable, since the constituents of

the integrands commute. The result now follows as in Theorem 3.3.
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