LOG-CONVEX MATRIX FUNCTIONS

Jaspal Singh Aujla, Mandeep Singh Rawla, H. L. Vasudeva
Let f be a positive real-valued function defined on an interval $I \subseteq R$. The function f is said to be log-convex if $\log f$ is convex on I. In this note, we study an analogue of log-convexity for matrix functions and discuss the gamma function in this setting. The notion of log-convexity on the positive cone of positive continuous functions is also discussed. A criterion for log-convexity for each of the classes of matrix functions and the functions defined on the positive cone of positive continuous functions is obtained.

1. Introduction. Let f be a positive function defined on an interval $\mathbf{I} \subseteq \mathbf{R}$. Then f is called log-convex or multiplicatively convex if for $x, y \in \mathbf{I}$ and $0 \leq \lambda \leq 1$, the inequality

$$
\begin{equation*}
\log f(\lambda x+(1-\lambda) y) \leq \lambda \log f(x)+(1-\lambda) \log f(y) \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq(f(x))^{\lambda}(f(y))^{1-\lambda} \tag{2}
\end{equation*}
$$

holds. For properties of such functions, the reader may refer to Roberts and Varberg [16].

From now on I will denote the interval $(0, \infty)$ and we shall take our function $f: \mathbf{I} \rightarrow \mathbf{I}$ to be continuous. This mild restriction on f shall allow us to state an analogue of log-convexity (see (3) and (4) below) for matrix functions with the special choice of λ, namely, $\lambda=1 / 2$. For an $n \times n$ positive definite hermitian matrix $A, f(A)$ is defined by familiar functional calculi. The above definition of log-convexity when extended to matrix functions could be independently described by any of the following two inequalities:

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leq f(A) \# f(B) \tag{3}
\end{equation*}
$$

1991 Mathematics Subject Classification: Primary 15A45; Secondary 47A60

$$
\begin{equation*}
\log f\left(\frac{A+B}{2}\right) \leq \frac{\log f(A)+\log f(B)}{2} \tag{4}
\end{equation*}
$$

where A and B are positive definite hermitian matrices of order n, \# denotes geometric mean. We shall call a function $f: \mathbf{I} \rightarrow \mathbf{I}$, satisfying (3) (resp. (4)) for $n \times n$ positive definite hermitian matrices A and B, multiplicatively matrix (resp. \log matrix) convex on \mathbf{I} of order n. Note that the class of multiplicatively matrix convex (resp. log matrix convex) functions of order 1 in the sence of (3) (resp. (4)) is precisely the class of log-convex functions. It is also clear, using the matrix monotonicity of \log function (see Ando [2]), that (3) implies (4) in the case of commuting matrices. In section 2, we study the inequality (3). It is shown that the class of functions satisfying (3) is a convex cone.

A typical example of usual \log convex function is the Gamma function. Matrix valued Gamma function has been studied by a variety of authors including K. J. Heuvers, D. Moak [11] and K. I. Gross, W. J. III. Holman [9]. Whereas the authors in [11] seek solutions of the functional equation $f(z+1)=z f(z)$ for matrix valued functions. K. I. Gross and W. J. III. Holman [9] study the properties of the matrix valued Gamma function generalising its usual integral representation. For a detailed study of matrix valued special functions, the reader may refer to $[\mathbf{1 7}]$. We seek to characterise log-convex matrix functions defined on commuting matrices satisfying the functional equation $f(x+1)=x f(x)$ and the normalising condition $f(1)=1$. Though restricted in scope, the treatment is satisfying as it establishes a complete analogue of the treatment in [3].

In section 3, the inequality (4) is studied. Here we provide a characterisation of log-convex functions in terms of Frechet derivatives. In the final section log-convex functions on the Banach space of continuous functions on a compact Housdorff space are studied and an easily verifiable criterion of log-convexity in the above said space is given.
2. In this section, we shall consider the inequality (3), namely,

$$
f\left(\frac{A+B}{2}\right) \leq f(A) \# f(B)
$$

where A and B are positive definite hermitian matrices and f is a positive continuous function defined on I. Since geometric mean is less than or equal to the arithmetic mean, Ando [1], it follows that if f satisfies (3), it is mid-matrix convex and hence matrix convex, using continuity of f, Kwong [14]. That the class of functions satisfying (3) is strictly contained in the class of matrix convex functions follows on observing that the function $f(x)=x, x \in(0, \infty)$, is matrix convex of order n for every positive integer n but it does not satisfy inequality (3) even in the case $n=1$. Our first proposition shows that the class of functions satisfying (3) is fairly rich. Indeed, we have the following proposition:

Proposition 2.1. Let $f: \mathbf{I} \rightarrow \mathbf{I}$ be operator concave. Then $1 / f$ satisfies the inequality (3).

Proof. For A, B positive definite hermitian matrices, we have

$$
f\left(\frac{A+B}{2}\right) \geq \frac{f(A)+f(B)}{2} \geq f(A) \# f(B)
$$

using [1, Corollary I.2.4]. Consequently,

$$
\left(f\left(\frac{A+B}{2}\right)\right)^{-1} \leq(f(A) \# f(B))^{-1}=(f(A))^{-1} \#(f(B))^{-1}
$$

using that $f(x)=-x^{-1}$ is matrix monotone on \mathbf{I} of order n for every positive integer n and [1, Corollary I.2.1 (vii)] respectively.

Theorem 2.2. (i) Let $f, g: \mathbf{I} \rightarrow \mathbf{I}$ satisfy inequality (3) and $\alpha \geq 0$, then $f+g$ and αf satisfy (3).
(ii) Let $\left\{f_{n}\right\}_{n \geq 1}$, where $f_{n}: \mathbf{I} \rightarrow \mathbf{I}$, be a sequence of functions satisfying (3) and let $f_{n} \rightarrow f$, and f is a positive function, then f satisfies the inequality (3).
(iii) Let g satisfy (3) and f be matrix monotone and positive linear, then $f \circ g$ satisfies (3).

Proof. (i) For A, B positive definite hermitian matrices, we have

$$
\begin{aligned}
(f+g)\left(\frac{A+B}{2}\right)=f\left(\frac{A+B}{2}\right)+g\left(\frac{A+B}{2}\right) & \leq(f(A) \# f(B))+(g(A) \# g(B)) \\
& \leq(f+g)(A) \#(f+g)(B)
\end{aligned}
$$

using [11, Theorem $\left.3.5\left(I^{`}\right)\right]$.
That $\alpha f, \alpha \geq 0$, satisfies (3) whenever f does, follows on using [1, Corollary I. 2.1 (ii)].
(ii) For A, B positive definite hermitian matrices,

$$
f_{n}\left(\frac{A+B}{2}\right) \leq f_{n}(A) \# f_{n}(B) \quad(n=1,2, \ldots)
$$

holds. On taking limits as $n \rightarrow \infty$, we obtain the desired result.
(iii) For A, B positive definite hermitian matrices,

$$
\begin{aligned}
f \circ g\left(\frac{A+B}{2}\right) & =f\left(g\left(\frac{A+B}{2}\right)\right) \leq f(g(A) \# g(B)) \leq f(g(A)) \# f(g(B)) \\
& =f \circ g(A) \# f \circ g(B) ;
\end{aligned}
$$

the last two inequalities follow since f is matrix monotone and positive linear.
Theorem 2.3. Let $f, g: \mathbf{I} \rightarrow \mathbf{I}$ be functions satisfying the inequality (3). Let $h(A)=$ $f(A) * g(A)$, where A is a positive definite hermitian matrix, be the Hadamard product of $f(A)$ and $g(A)$. Then h satisfies the inequality (3).

Proof. For A, B positive definite hermitian matrices, we have

$$
\begin{aligned}
h\left(\frac{A+B}{2}\right) & =f\left(\frac{A+B}{2}\right) * g\left(\frac{A+B}{2}\right) \leq(f(A) \# f(B)) *(g(A) \# g(B)) \\
& \leq(f(A) * g(A)) \#(f(B) * g(B))=h(A) \# h(B)
\end{aligned}
$$

using [2, Corollary 8.1] and [4, Theorem 4.1].
For $x \geq 0$, the gamma function Γ has been characterised as one which satisfies the functional equation $\Gamma(x+1)=x \Gamma(x), \Gamma(1)=1$ and is log-convex. For an account of this characterisation, the reader may refer to ArTin [3]. In what follows, we give a characterisation of the gamma function for commuting matrices of order $n, n \in \mathbf{N}$, is arbitrary. The proof is a suitable adaption of the one given in Artin's text [3]. We first show that
(i) $\Gamma(A+I)=A \Gamma(A)$,
(ii) $\Gamma(I)=I$,
(iii) $\Gamma\left(\frac{A+B}{2}\right) \leq \Gamma(A) \# \Gamma(B)$,
where A, B are positive definite hermitian matrices of order n satisfying $A B=$ $B A$ and I denotes the identity matrix. Indeed, if $A=\sum_{i=1}^{n} \lambda_{i} E_{i}$ is the spectral resolution of A, where for $i=1,2, \ldots, n, \lambda_{i}$ are the eigen values of A and E_{i} are the corresponding projections, then $A+I=\sum_{i=1}^{n}\left(\lambda_{i}+1\right) E_{i}$. Consequently,
$\Gamma(A+I)=\sum_{i=1}^{n} \Gamma\left(\lambda_{i}+1\right) E_{i}=\sum_{i=1}^{n} \lambda_{i} \Gamma\left(\lambda_{i}\right) E_{i}=\left(\sum_{i=1}^{n} \lambda_{i} E_{i}\right)\left(\sum_{i=1}^{n} \Gamma\left(\lambda_{i}\right) E_{i}\right)=A \Gamma(A)$.
That $\Gamma(I)=I$ is obvious. We next assume that A and B commute. Then $B=$ $\sum_{i=1}^{n} \mu_{i} E i[12$, Theorem 3.2.4.2]. Consequently,

$$
\begin{aligned}
\Gamma\left(\frac{A+B}{2}\right) & =\sum_{i=1}^{n} \Gamma\left(\frac{\lambda_{i}+\mu_{i}}{2}\right) E_{i} \leq \sum_{i=1}^{n}\left(\Gamma\left(\lambda_{i}\right)\right)^{1 / 2}\left(\Gamma\left(\mu_{i}\right)\right)^{1 / 2} E_{i} \\
& =\left(\sum_{i=1}^{n}\left(\Gamma\left(\lambda_{i}\right)\right)^{1 / 2} E_{i}\right)\left(\sum_{i=1}^{n}\left(\Gamma\left(\mu_{i}\right)\right)^{1 / 2} E_{i}\right)=\Gamma(A) \# \Gamma(B) .
\end{aligned}
$$

Theorem 2.4. If a function f satisfies the following three conditions:
(i) The domain of definition of f is \mathbf{I} and f satisfies the inequality (3) for commuting A and B,
(ii) $f(A+I)=A f(A)$, where A is a positive definite hermitian matrix of order n,
(iii) $f(I)=I$, where I denotes the identity matrix,
then

$$
\log f(A)=\lim _{n \rightarrow \infty}\left(A \log (n I)+\log (n!I)-\sum_{k=0}^{n} \log (A+k I)\right)
$$

Proof. For an f satisfying the hypothesis,

$$
f(n I)=f((n-1) I+I)=(n-1) f((n-1) I)=\cdots=(n-1)!I
$$

using (ii) and (iii) of the hypothesis. Assume that $0<A \leq I$ and n is an integer ≥ 2. Using monotonicity of the \log function [2], it follows, on using (i) of the hypothesis, that

$$
\log f\left(\frac{A+B}{2}\right) \leq \frac{\log f(A)+\log f(B)}{2}
$$

since $A B=B A$. Since $(n-1) I \leq n I \leq A+n I \leq(n+1) I$, and $\log f$ is convex, we have

$$
\begin{aligned}
-(\log f((n-1) I)-\log f(n I)) & \leq A^{-1 / 2}(\log f(A+n I)-\log f(n I)) A^{-1 / 2} \\
& \leq \log f((n+1) I)-\log f(n I)
\end{aligned}
$$

using [5, Theorem 3.2]. Consequently,

$$
\log ((n-1) I) \leq A^{-1 / 2}(\log f(A+n I)-\log f(n I)) A^{-1 / 2} \leq \log (n I)
$$

or

$$
A \log ((n-1) I)+\log ((n-1)!I) \leq \log f(A+n I) \leq A \log (n I)+\log ((n-1)!I)
$$

Since

$$
f(A+n I)=(A+(n-1) I)(A+(n-2) I) \cdots(A+I) A f(A)
$$

the above inequality yields

$$
\begin{aligned}
& A \log ((n-1) I)+\log ((n-1)!I)-\sum_{k=0}^{n-1} \log (A+k I) \\
& \quad \leq \log f(A) \\
& \quad \leq A \log (n I)+\log ((n-1)!I)-\sum_{k=0}^{n-1} \log (A+k I) \\
& \quad=A \log (n I)+\log (n!I)+\log (A+n I)-\sum_{k=0}^{n} \log (A+k I)-\log (n I)
\end{aligned}
$$

Since the above inequality holds for all $n \geq 2$, we can replace n by $(n+1)$ on the left side. Thus

$$
\begin{aligned}
& A \log (n I)+\log (n!I)-\sum_{k=0}^{n} \log (A+k I) \\
& \quad \leq \log f(A) \\
& \quad \leq A \log (n I)+\log (n!I)-\sum_{k=0}^{n} \log (A+k I)+\log (I+A / n)
\end{aligned}
$$

Since $\log (I+A / n) \rightarrow 0$ as $n \rightarrow \infty$, we obtain

$$
\log f(A)=\lim _{n \rightarrow \infty}\left(A \log (n I)+\log (n!I)-\sum_{k=0}^{n} \log (A+k I)\right)
$$

3. We next turn our attention to the inequality (4), i.e.,

$$
\log f\left(\frac{A+B}{2}\right) \leq \frac{\log f(A)+\log f(B)}{2}
$$

where A and B are positive definite hermitian matrices of order n. In this case, we have the following theorem, whose proof is easy and is, therefore, not included.

Theorem 3.1. The class of functions $f: \mathbf{I} \rightarrow \mathbf{I}$ satisfying (4) is closed under multiplication and taking of limits, provided the limits exist and are positive.

Let \mathcal{X} and \mathcal{Y} be real Banach spaces. Let f be a map from an open subset E of the space \mathcal{X} into the space \mathcal{Y}. We say that f is differentiable at $u \in E$ if there exists a linear map $\mathrm{D} f(u)$ from \mathcal{X} to \mathcal{Y} satisfying

$$
\|f(u+x)-f(u)-\mathrm{D} f(u)(x)\|=o(\|x\|)
$$

for all x. The linear map is called the derivative of f at u. We have

$$
\mathrm{D} f(u)(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f(u+t x) \quad(x \in \mathcal{X})
$$

If f is differentiable at all $u \in E$, we get a map $u \rightarrow \mathrm{D} f(u)$ from E in $\mathcal{B}(\mathcal{X}, \mathcal{Y})$, the bounded linear operators from \mathcal{X} to \mathcal{Y}. The derivative of this map at u, if it exists, is called the second derivative of f at u and is denoted by $\mathrm{D}^{2} f(u)$. Observe that $\mathrm{D}^{2} f(u)$ is an element of $\mathcal{B}(\mathcal{X}, \mathcal{B}(\mathcal{X}, \mathcal{Y}))$. This latter space can be identified with the space of bounded bilinear maps from \mathcal{X} into \mathcal{Y} equiped with the norm

$$
\|\phi\|=\inf \left\{\alpha:\left\|\phi\left(x_{1}, x_{2}\right)\right\| \leq \alpha\left\|x_{1}\right\|\left\|x_{2}\right\|\right\} .
$$

In case $\mathcal{X}=\mathcal{Y}=\mathcal{B}(\mathcal{H})$, bounded linear maps on a Hilbert space \mathcal{H} and $f(A)=A^{-1}$, where A is in the set of invertible operators,

$$
\mathrm{D} f(A)(B)=-A^{-1} B A^{-1}
$$

and

$$
\mathrm{D}^{2} f(A)\left(B_{1}, B_{2}\right)=A^{-1} B_{1} A^{-1} B_{2} A^{-1}+A^{-1} B_{2} A^{-1} B_{1} A^{-1}
$$

for all B, B_{1}, B_{2} in $\mathcal{B}(\mathcal{H})$.
The following analogue of the standard calculus results shall be used in the sequel. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be Banach spaces, let g be a map from \mathcal{X} to \mathcal{Y}, and f a map from \mathcal{Y} to \mathcal{Z}. Let $\phi=f \circ g$. Then for all $x, x_{1}, x_{2} \in \mathcal{X}$,

$$
\begin{aligned}
\mathrm{D} \phi(x)\left(x_{1}\right) & =(\mathrm{D} f(g(x)) \circ \mathrm{D} g(x))\left(x_{1}\right), \\
\mathrm{D}^{2} \phi(x)\left(x_{1}, x_{2}\right) & =\mathrm{D}^{2} f(g(x))\left(\mathrm{D} g(x)\left(x_{1}\right), \mathrm{D} g(x)\left(x_{2}\right)\right)+\mathrm{D} f(g(x))\left(\mathrm{D}^{2} g(x)\left(x_{1}, x_{2}\right)\right) .
\end{aligned}
$$

For the above definitions, results and other related material, the reader may refer to Flett [8].

Let $f:(0, \infty) \rightarrow(0, \infty)$ and A be a positive definite Hermitian matrix with spectral resolution $A=\sum_{i=1}^{n} \mu_{i} E_{i}$. Then $f(A)=\sum_{i=1}^{n} f\left(\mu_{i}\right) E_{i}=\sum_{i=1}^{n} a_{i} E_{i}$, where $a_{i}=f\left(\mu_{i}\right), i=1,2, \ldots, n$ and $(\lambda-f(A))^{-1}=\sum_{i=1}^{n}\left(\lambda-a_{i}\right)^{-1} E_{i}$. We shall use the symbols X, Y, Z for $\mathrm{D} f(A)\left(B_{1}\right), \mathrm{D} f(A)\left(B_{2}\right)$ and $\mathrm{D}^{2} f(A)\left(B_{1}, B_{2}\right)$ respectively.

Proposition 3.2. (i) ${ }_{-\infty}^{0}(\lambda-f(A))^{-1} Z(\lambda-f(A))^{-1} \mathrm{~d} \lambda=(f(A))^{-1 / 2} Z(f(A))^{-1 / 2}$

$$
+\sum_{i \neq j}\left(\frac{\log a_{j}-\log a_{i}}{a_{j}-a_{i}}-\frac{1}{\sqrt{a_{i} a_{j}}}\right) E_{i} Z E_{j}
$$

(ii) ${ }_{-\infty}^{0}(\lambda-f(A))^{-1} X(\lambda-f(A))^{-1} Y(\lambda-f(A))^{-1} \mathrm{~d} \lambda$

$$
\begin{aligned}
& =-\frac{1}{2}(f(A))^{-1 / 2} X(f(A))^{-1} Y(f(A))^{-1 / 2} \\
& +\sum_{i=j \neq k}\left(\frac{\log a_{k}-\log a_{i}}{\left(a_{k}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{k}-a_{i}\right)}+\frac{1}{2 a_{i}^{3 / 2} a_{k}}\right) E_{i} X E_{i} Y E_{k}
\end{aligned}
$$

$$
+\sum_{i=k \neq j}\left(\frac{\log a_{j}-\log a_{i}}{\left(a_{j}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{j}-a_{i}\right)}+\frac{1}{2 a_{i} a_{j}}\right) E_{i} X E_{j} Y E_{i}
$$

$$
+\sum_{i \neq j=k}\left(\frac{\log a_{i}-\log a_{j}}{\left(a_{i}-a_{j}\right)^{2}}-\frac{1}{a_{j}\left(a_{i}-a_{j}\right)}+\frac{1}{2 a_{i}^{1 / 2} a_{j}^{3 / 2}}\right) E_{i} X E_{j} Y E_{j}
$$

$$
+\sum_{i \neq j \neq k}\left(\frac{\log a_{i}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)}+\frac{\log a_{j}}{\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)}\right.
$$

$$
\left.+\frac{\log a_{k}}{\left(a_{k}-a_{i}\right)\left(a_{k}-a_{j}\right)}+\frac{1}{2 a_{i}^{1 / 2} a_{j} a_{k}^{1 / 2}}\right) E_{i} X E_{j} Y E_{k}
$$

Proof. (i) ${ }_{-\infty}^{0}(\lambda-f(A))^{-1} Z(\lambda-f(A))^{-1} \mathrm{~d} \lambda=\sum_{-\infty}^{0} \frac{\mathrm{~d} \lambda}{} \frac{a_{i, j}}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)} E_{i} Z E_{j}$

$$
\begin{aligned}
& =\sum_{i}{ }_{-\infty}^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)^{2}} E_{i} Z E_{i}+\sum_{i \neq j}{ }^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)} E_{i} Z E_{j} \\
& =\sum_{i} \frac{1}{a_{i}} E_{i} Z E_{i}+\sum_{i \neq j} \frac{\log a_{i}-\log a_{j}}{a_{i}-a_{j}} E_{i} Z E_{j} \\
& =\left(\sum_{i} a_{i}^{-1 / 2} E_{i}\right) Z\left(\sum_{i} a_{i}^{-1 / 2} E_{i}\right)+\sum_{i \neq j}\left(\frac{\log a_{i}-\log a_{j}}{a_{i}-a_{j}}-a_{i}^{-1 / 2} a_{j}^{-1 / 2}\right) E_{i} Z E_{j} \\
& =(f(A))^{-1 / 2} Z(f(A))^{-1 / 2}+\sum_{i \neq j}\left(\frac{\log a_{i}-\log a_{j}}{a_{i}-a_{j}}-\frac{1}{\sqrt{a_{i} a_{j}}}\right) E_{i} Z E_{j} .
\end{aligned}
$$

(ii) ${ }_{-\infty}^{0}(\lambda-f(A))^{-1} X(\lambda-f(A))^{-1} Y(\lambda-f(A))^{-1} \mathrm{~d} \lambda$

$$
\begin{aligned}
& =\sum_{-\infty}^{0} \sum_{i, j, k} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)\left(\lambda-a_{k}\right)} E_{i} X E_{j} Y E_{k} \\
& =\sum_{i}^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)^{3}} E_{i} X E_{i} Y E_{i}+\sum_{i=j \neq k}{ }^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)^{2}\left(\lambda-a_{k}\right)} E_{i} X E_{i} Y E_{k}
\end{aligned}
$$

$$
+\sum_{i=k \neq j-\infty} \frac{\mathrm{d} \lambda}{\left(\lambda-a_{i}\right)^{2}\left(\lambda-a_{j}\right)} E_{i} X E_{j} Y E_{i}+\sum_{i \neq j=k-\infty}^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)^{2}} E_{i} X E_{j} Y E_{j}
$$

$$
+\sum_{i \neq j \neq k-\infty}^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)\left(\lambda-a_{k}\right)} E_{i} X E_{j} Y E_{k}
$$

Now

$$
{ }_{-\infty}^{0} \frac{\mathrm{~d} \lambda}{\left(\lambda-a_{i}\right)^{3}}=-\frac{1}{2 a_{i}^{2}},
$$

$$
\begin{aligned}
\frac{\mathrm{d} \lambda}{\left(\lambda-a_{i}\right)^{2}\left(\lambda-a_{k}\right)} & =\int_{-\infty}^{0} \frac{1}{\left(a_{i}-a_{k}\right)^{2}}\left(-\frac{1}{\lambda-a_{i}}+\frac{a_{i}-a_{k}}{\left(\lambda-a_{i}\right)^{2}}+\frac{1}{\lambda-a_{k}}\right) \mathrm{d} \lambda \\
& =\frac{\log a_{k}-\log a_{i}}{\left(a_{k}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{k}-a_{i}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& { }_{-\infty}^{0} \frac{\mathrm{~d} d \lambda}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)\left(\lambda-a_{k}\right)}={ }_{-\infty}^{0}\left(\frac{1}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)} \frac{1}{\left(\lambda-a_{i}\right)}\right. \\
& \left.+\frac{1}{\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)} \frac{1}{\left(\lambda-a_{j}\right)}+\frac{1}{\left(a_{k}-a_{i}\right)\left(a_{k}-a_{j}\right)} \frac{1}{\left(\lambda-a_{k}\right)}\right) \mathrm{d} \lambda .
\end{aligned}
$$

Observe that

$$
{ }_{-\infty}^{0} \frac{1}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)}\left(\frac{1}{\lambda-a_{i}}-\frac{\lambda}{\lambda^{2}+1}\right) \mathrm{d} \lambda=\frac{\log a_{i}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)} .
$$

It then follows that

$$
\begin{array}{r}
\frac{d \lambda}{{ }_{-\infty}} \begin{array}{r}
\frac{\log a_{i}}{\left(\lambda-a_{i}\right)\left(\lambda-a_{j}\right)\left(\lambda-a_{k}\right)}=\frac{\log a_{j}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)} \\
+\frac{\log a_{k}}{\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)} \\
\end{array} .
\end{array}
$$

Hence

$$
\begin{aligned}
&(\lambda-(f(A))^{-1} X(\lambda-f(A))^{-1} Y(\lambda-f(A))^{-1} \mathrm{~d} \lambda=-\frac{1}{2 a_{i}^{2}} E_{i} X E_{i} Y E_{i} \\
&+\sum_{i=j \neq k}\left(\frac{\log a_{k}-\log a_{i}}{\left(a_{k}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{k}-a_{i}\right)}\right) E_{i} X E_{i} Y E_{k} \\
&+\sum_{i=k \neq j}\left(\frac{\log a_{j}-\log a_{i}}{\left(a_{j}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{j}-a_{i}\right)}\right) E_{i} X E_{j} Y E_{i} \\
&+\sum_{i \neq j=k}\left(\frac{\log a_{i}-\log a_{j}}{\left(a_{i}-a_{j}\right)^{2}}-\frac{1}{a_{j}\left(a_{i}-a_{j}\right)}\right) E_{i} X E_{j} Y E_{j} \\
&+\sum_{i \neq j \neq k}\left(\frac{\log a_{i}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)}+\frac{\log a_{j}}{\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)}\right. \\
&\left.\quad=-\frac{\log a_{k}}{\left(a_{k}-a_{i}\right)\left(a_{k}-a_{j}\right)}\right) E_{i} X E_{j} Y E_{k} \\
& \sum_{i=j \neq k}\left(\frac{\log a_{k}-\log a_{i}}{\left(a_{k}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{k}-a_{i}\right)}+\frac{1}{2 a_{i}^{3 / 2} a_{k}}\right) E_{i} X E_{i} Y E_{k} \\
& \quad+\sum_{i=k \neq j}\left(\frac{\log a_{j}-\log a_{i}}{\left(a_{j}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{j}-a_{i}\right)}+\frac{1}{2 a_{i} a_{j}}\right) E_{i} X E_{j} Y E_{i} \\
&+\sum_{i \neq j=k}\left(\frac{\log a_{i}-\log a_{j}}{\left(a_{i}-a_{j}\right)^{2}}-\frac{1}{a_{j}\left(a_{i}-a_{j}\right)}+\frac{1}{2 a_{i}^{1 / 2} a_{j}^{3 / 2}}\right) E_{i} X E_{j} Y E_{j} \\
&+\sum_{i \neq j \neq k}\left(\frac{\log a_{i}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)}+\frac{\log a_{j}}{\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)}\right. \\
&\left.\quad+\frac{\log a_{k}}{\left(a_{k}-a_{i}\right)\left(a_{k}-a_{j}\right)}+\frac{1}{2 a_{i}^{1 / 2} a_{j} a_{k}^{1 / 2}}\right) E_{i} X E_{j} Y E_{k}
\end{aligned}
$$

Theorem 3.3. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a twice continuously differentiable function. Then f is log matrix convex function of order n iff

$$
\begin{aligned}
& \quad(f(A))^{-1 / 2} Z(f(A))^{-1 / 2}-\frac{1}{2}(f(A))^{-1 / 2} X(f(A))^{-1} Y(f(A))^{-1 / 2} \\
& - \\
& \frac{1}{2}(f(A))^{-1 / 2} Y(f(A))^{-1} X(f(A))^{-1 / 2} \\
& +\sum_{i=j \neq k}\left(\frac{\log a_{k}-\log a_{i}}{\left(a_{k}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{k}-a_{i}\right)}+\frac{1}{2 a_{i}^{3 / 2} a_{k}}\right)\left(E_{i} X E_{i} Y E_{k}+E_{i} Y E_{i} X E_{k}\right) \\
& + \\
& \sum_{i=k \neq j}\left(\frac{\log a_{j}-\log a_{i}}{\left(a_{j}-a_{i}\right)^{2}}-\frac{1}{a_{i}\left(a_{j}-a_{i}\right)}+\frac{1}{2 a_{i} a_{j}}\right)\left(E_{i} X E_{j} Y E_{i}+E_{i} Y E_{j} X E_{i}\right) \\
& + \\
& \left.\sum_{i \neq j=k}\left(\frac{\log a_{i}-\log a_{j}}{\left(a_{i}-a_{j}\right)^{2}}-\frac{1}{a_{i}\left(a_{i}-a_{j}\right)}+\frac{1}{2 a_{i}^{1 / 2} a_{j}^{3 / 2}}\right) E_{i} X E_{j} Y E_{j}+E_{i} Y E_{j} X E_{j}\right) \\
& + \\
& \quad \sum_{i \neq j \neq k}\left(\frac{\log a_{i}}{\left(a_{i}-a_{j}\right)\left(a_{i}-a_{k}\right)}+\frac{\log a_{j}}{\left(a_{j}-a_{k}\right)\left(a_{j}-a_{i}\right)}+\frac{\log a_{k}}{\left(a_{k}-a_{i}\right)\left(a_{k}-a_{j}\right)}\right. \\
& \left.\quad+\frac{1}{2 a_{i}^{1 / 2} a_{j} a_{k}^{1 / 2}}\right)\left(E_{i} X E_{j} Y E_{k}+E_{i} Y E_{j} X E_{k}\right)
\end{aligned}
$$

is positive definite matrix for all positive definite A and for all B_{1} and B_{2}.
Proof. Observe that for $x>0$,

$$
\log x=\int_{-\infty}^{0}\left(\frac{1}{\lambda-x}-\frac{\lambda}{\lambda^{2}+1}\right) \mathrm{d} \lambda
$$

(see page $27,[7]$). Consequently,

$$
\log f(A)={ }_{-\infty}^{0}\left(\frac{1}{\lambda I-f(A)}-\frac{\lambda}{\lambda^{2}+1} I\right) \mathrm{d} \lambda
$$

where A is a positive definite Hermitian matrix of order n. Since f is twice differentiable, $\log f(A)$ is twice Frechet differentiable [6, Theorem 3.1]. Moreover,

$$
\mathrm{D} \log f(A)(B)={ }_{-\infty}^{0}(\lambda I-f(A))^{-1} \mathrm{D} f(A)(B)(\lambda I-f(A))^{-1} \mathrm{~d} \lambda
$$

for all $B \in \mathcal{B}(\mathcal{H})$, and

$$
\begin{aligned}
\mathrm{D}^{2} \log f(A)\left(B_{1}, B_{2}\right)= & { }_{-\infty}^{0}(\lambda I-f(A))^{-1} \mathrm{D}^{2} f(A)\left(B_{1}, B_{2}\right)(\lambda I-f(A))^{-1} \mathrm{~d} \lambda \\
& +{ }_{-\infty}^{0}(\lambda I-f(A))^{-1}\left(\mathrm{D} f(A)\left(B_{2}\right)(\lambda I-f(A))^{-1} D f(A)\left(B_{1}\right)\right. \\
& \left.+\mathrm{D} f(A)\left(B_{1}\right)(\lambda I-f(A))^{-1} \mathrm{D} f(A)\left(B_{2}\right)\right)(\lambda I-f(A))^{-1} \mathrm{~d} \lambda
\end{aligned}
$$

for all $B_{1}, B_{2} \in \mathcal{B}(\mathcal{H})$.
Since f is \log matrix convex iff $\log f$ is matrix convex, the result follows on using Proposition 3.2 and convexity criterion [6, Theorem 3.2].
4. In this section we discuss the notion of log-convexity in the real Banach space $\mathcal{X}=\mathcal{C}(\mathcal{M})$, the space of continuous real-valued functions on a compact Hausdorff space \mathcal{M}. Let \mathcal{C} denotes the cone of positive functions in \mathcal{X} and let \mathcal{C}^{*} be the set of non-negative regular Borel measures on \mathcal{M}. A function $f: \mathcal{C} \rightarrow \mathcal{C}$ satisfying the inequality

$$
f((1-\theta) u+\theta v) \leq(f(u))^{1-\theta}(f(v))^{\theta}
$$

for all $u, v \in \mathcal{C}$ and for all $\theta, 0 \leq \theta \leq 1$, is said to be log-convex. The following proposition is helpful in constructing examples of functions which satisfy the above said inequality. The motivation for the statement and the proof is the Proposition 3.1 [15].

Proposition 4.1. (i) Let $f: \mathcal{C} \rightarrow \mathcal{C}$ be a mapping. Then f is log-convex iff for every $w^{*} \in \mathcal{C}^{*}$ and for every pair $u, v \in \mathcal{C}$, the map $\theta \rightarrow w^{*}(f((1-\theta) u+\theta v))$ is log-convex.
(ii) If $f: \mathcal{C} \rightarrow \mathcal{C}$ and $g: \mathcal{C} \rightarrow \mathcal{C}$ are log-convex then so is $f+g$; and if, in addition, f is order preserving, $f \circ g$ is also log-convex.

Proof. (i) Suppose f is log-convex. For $u, v \in \mathcal{C}, 0 \leq \theta \leq 1$, consider the function $h:[0,1] \rightarrow \mathbf{R}^{+}$, where $\mathbf{R}^{+}=\{x \in \mathbf{R}: x \geq 0\}$, defined by

$$
h(\theta)=w^{*}(f((1-\theta) u+\theta v)) .
$$

We wish to show that $h(\theta)$ is log-convex. Indeed, for $0 \leq \theta_{0} \leq \theta_{1}, 0 \leq t \leq 1$, and $\theta_{t}=(1-t) \theta_{0}+t \theta_{1}$,

$$
\begin{aligned}
h\left(\theta_{t}\right) & =w^{*}\left(f\left(\left(1-\left((1-t) \theta_{0}+t \theta_{1}\right)\right) u+\left((1-t) \theta_{0}+t \theta_{1}\right) v\right)\right) \\
& =w^{*}\left(f\left((1-t)\left(\left(1-\theta_{0}\right) u+\theta_{0} v\right)+t\left(\left(1-\theta_{1}\right) u+\theta_{1} v\right)\right)\right) \\
& \leq w^{*}\left(\left(f\left(\left(1-\theta_{0}\right) u+\theta_{0} v\right)\right)^{1-t}\left(f\left(\left(1-\theta_{1}\right) u+\theta_{1} v\right)\right)^{t}\right) \\
& \leq\left(w^{*}\left(f\left(\left(1-\theta_{0}\right) u+\theta_{0} v\right)\right)\right)^{1-t}\left(w^{*}\left(f\left(\left(1-\theta_{1}\right) u+\theta_{1} v\right)\right)\right)^{t}
\end{aligned}
$$

using the fact that w^{*} is a non-negative functional and HÖLDER's inequality $[\mathbf{1 0}$, page 140].

Conversely, suppose that $h(\theta)$ defined above is log-convex for all choices of $u, v \in \mathcal{C}$ and $w^{*} \in \mathcal{C}^{*}$. Choose $w^{*}(z)=z(m)$ for a fixed $m \in \mathcal{M}$, one finds that

$$
(f((1-\theta) u+\theta v))(m) \leq(f(u))^{1-\theta}(m)(f(v))^{\theta}(m)
$$

Since $m \in \mathcal{M}$ is arbitrary, the result follows.
(ii) Let $h(z)=(f+g)(z), z \in \mathcal{C}$. Then

$$
\begin{aligned}
h((1-\theta) u+\theta v) & =f((1-\theta) u+\theta v)+g((1-\theta) u+\theta v) \\
& \leq(f(u))^{1-\theta}(f(v))^{\theta}+(g(u))^{1-\theta}(g(v))^{\theta} \\
& \leq(f(u)+g(u))^{1-\theta}(f(v)+g(v))^{\theta}
\end{aligned}
$$

for all pairs $u, v \in \mathcal{C}$ and $0 \leq \theta \leq 1$.
If, in addition, f is order preserving, then

$$
\begin{aligned}
f(g((1-\theta) u+\theta v)) & \leq f\left((g(u))^{1-\theta}(g(v))^{\theta}\right) \\
& \leq f((1-\theta) g(u)+\theta g(v)) \\
& \leq(f(g(u)))^{1-\theta}(f(g(v)))^{\theta}
\end{aligned}
$$

for all pairs $u, v \in \mathcal{C}$ and $0 \leq \theta \leq 1$.

Theorem 4.2. Let $f: \mathcal{C} \rightarrow \mathcal{C}$ be a twice differentiable map. Then f is log-convex iff

$$
f(u) \mathrm{D}^{2} f(u)\left(v_{1}, v_{2}\right)-\mathrm{D} f(u)\left(v_{1}\right) \mathrm{D} f(u)\left(v_{2}\right) \geq 0
$$

Proof. As in the proof of Theorem 3.3, we have

$$
\log f(u)={ }_{-\infty}^{0}\left(\frac{1}{\lambda-f(u)}-\frac{\lambda}{\lambda^{2}+1}\right) \mathrm{d} \lambda
$$

Then

$$
\mathrm{D} \log f(u)(v)={ }_{-\infty}^{0}(\lambda-f(u))^{-1} \mathrm{D} f(u)\left(v_{1}\right)(\lambda-f(u))^{-1} \mathrm{~d} \lambda
$$

and

$$
\begin{aligned}
\mathrm{D}^{2} \log f(u)\left(v_{1}, v_{2}\right) & ={\underset{-\infty}{0}(\lambda-f(u))^{-1} \mathrm{D}^{2} f(u)\left(v_{1}, v_{2}\right)(\lambda-f(u))^{-1} \mathrm{~d} \lambda}^{0}(\lambda-f(u))^{-1}\left(\mathrm{D} f(u)\left(v_{2}\right)(\lambda-f(u))^{-1} \mathrm{D} f(u)\left(v_{1}\right)\right. \\
& +{ }_{-\infty}^{0}(\lambda-\infty \\
& \left.+\mathrm{D} f(u)\left(v_{1}\right)(\lambda-f(u))^{-1} \mathrm{D} f(u)\left(v_{2}\right)\right)(\lambda-f(u))^{-1} \mathrm{~d} \lambda
\end{aligned}
$$

on evaluating the integrals as in the case of real variable, since the constituents of the integrands commute. The result now follows as in Theorem 3.3.

Acknowledgement. H. L. Vasudeva has benefitted from discussions with Dr. A. L. Brown. The authors gratefully acknowledge refree's comments.

REFERENCES

1. T. Ando: Topics on operator inequalities, Lecture notes, Hokkaido University, Sapporro, 1978.
2. T. Ando: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Alg. Appl. 26 (1979), 203-241.
3. E. Artin: The Gamma Function. Holt, New York, 1964.
4. J. S. Aujla, H. L. Vasudeva: Inequalities involving Hadamard product and operator means. Math. Japon. 42 (1995), 265-272.
5. J. Bendat, S. Sherman: Monotone and convex operator functions. Trans. Amer. Math. Soc. 79 (1955), 58-71.
6. A. L. Brown, H. L. Vasudeva: The calculus of operator functions, operator monotonicity and operator convexity (to appear).
7. W. F. Donoghue: Monotone Matrix Functions. Springer Verlag, Berlin, Heidelberg, New York, 1974.
8. T. M. Flett: Differential Analysis. Cambridge University Press, Cambridge, 1980.
9. K. -I. Gross, W. J. -III. Holman: Matrix valued special functions and representation theory of the conformal group I. The generalised gamma function. Trans. Amer. Math. Soc. 258, No. 2 (1980), 319-350.
10. G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Cambridge University Press, Cambridge, 1964.
11. K. J. Heuvers, D. Moak: Matrix solutions of the functional equation of the gamma function. Aequationes Math. 33, No. 1 (1987), 1-17.
12. R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, London, New York, 1990.
13. F. Kubo, T. Ando: Means of positive linear operators. Math. Ann. 246 (1980), 205-224.
14. M. K. Kwong: Some results on monotone matrix functions. Linear Alg. Appl. 18 (1989), 129-153.
15. R. D. Nussbaum: Convexity and log convexity for the spectral radius. Linear Alg. Appli. 73 (1986), 59-122.
16. A. W. Roberts, D. E. Varberg: Convex Functions. Academic Press, New York, San Francisco, London, 1973.
17. N. J. Vilenkin, A. U. Klimyk: Representation of Lie groups and special functions. Classical and quantum groups and special functions. Translated from the Russian by V. A. Groza and A. A. Groza, Mathematics and its applications (Soviet Series), 75. Kluwer Academic Publishers Group, Dordrecht, (1992).

Department of Applied Mathematics, Regional Engineering College,
Jalandhar-144027,
Punjab, INDIA

Mandeep Singh Rawla
Department of Mathematics,
Panjab University,
Chandigarh-160014, INDIA
H. L. Vasudeva

Department of Mathematics, Panjab University,
Chandigarh-160014, INDIA

