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EVALUATION OF HIGHER-ORDER
DERIVATIVES OF THE GAMMA FUNCTION

Junesang Choi, H. M. Srivastava
The authors present explicit formulas for the evaluation of higher-order
derivatives of the familiar Gamma function. They also consider several appli-

cations of these explicit formulas. Further applications involving computation
and evaluation of some families of definite integrals are also indicated.

1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES

The familiar Gamma function I'(z) is represented by the following Eulerian
integral of the second kind:

(1.1) I'(z) = / ettrtdt (R(2) >0)
0

and its relative, the Beta function B(a, 3), by the following Eulerian integral of the
first kind:

1
(1.2) B(a,ﬁ):/t“’l(l—t)ﬁ’ldt (R(a) >0; R(B)>0).
0
In view of the WEIERSTRASS canonical product form for the Gamma function:
e~ 17 =2 2N\ —1
— d z/n 1 _
(1.3) T(z) = — H<(1+n) e > (zeC\{0, -1, -2, ...}),
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where v denotes the EULER-MASCHERONI constant defined by

"1
(1.4) v = lim (Zk—log n> &~ 0.577215664901532 .. .,

n— oo
k=1

the well-known relationship:

L(a)T'(8)
o+ 0)

can be used to continue the Beta function analytically as indicated above.

(1.5) B(a, B) = (o, BeC\{O, -1, =2, ...})

The Gamma function satisfies a simple functional relationship:

(1.6) T'(241) = 2I'(z) and T'(n+1) =n! (n € Ng:= NU{0}; N:={1, 2, ...}),

which motivated LEONHARD EULER (1707—1783) to undertake the problem of in-
terpolation of n! between the positive integer values of n.
The Digamma (or Psi) function 1(z) defined by

(1.7) W(z) = or 1ogI‘(z):/w(t)dt

is meromorphic on the whole complex z-plane with simple poles at z =0, —1, —2, ...
(with residue 1). Its special values include

(1.8) (1) =—y and ¢(1/2) =—y—2log2.
The RIEMANN Zeta function ¢(s) defined by

0o 1 1 oo )

X lmy R0

(19) C(S) = et 0o ﬂ |
(1-217)" ) —2% (R(s) > 0; 5 # 1)

can indeed be continued meromorphically to the whole complex s-plane with a
simple pole at s = 1 (with residue 1).
EULER evaluated ((2n) (n € N) explicitly, and we have

2 7 76
(2)=—, (W=5. 6)=7;
(1.10) (;8 90 10 945

8 = — 10 — T T T Ty

C®)=gzmgr A0 =ggezsoo)

from which follow some relationships among them; these relationships are recalled
here for later use:

(c2)" =
(c)* =

C), CR)CH) = TC6), CR)C(6) =2 ¢(8),

(1.11)
(), CRICE) = 55¢010), <L) = 15¢(10)

[SXAEEN B R g
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In fact, the evaluation of {(2n) (n € N) can be carried out by means of the known
formula:

27)2" By,

(1.12) ¢(2n) = (-1)"*! ( 2 (@) (n € Ny),

where B,, denotes the BERNOULLI numbers defined by

z B, ,
(1.13) ez—lzgﬁz (2] < 27),

for which we have the recursion formula:

n
n
(1.14) B, =Y (k)Bk (ne N\ {1})
k=0
and the following numerical values:
1 1 1 1
Bozl, Blz_fa 32:75 B4:_77 B6:77
1 5
Bg = %,Bm:%,...,and Bgn+1:0 (TLEN)

We may recall here a known recursion formula for ¢(2n):

2

(1.16) ((2n) = 5=

n—1
> C(2k)¢(2n —2k)  (neN\{1}),
k=1

which can also be used to evaluate ((2n) (n € N\ {1}).
The Polygamma functions are defined by

n+1
(1.17) P (2) == W++1(1<>g [(2)) (ne€N) and 3»O(2) = y(2),

from which it is easy to derive the relationship:
(1.18) B () = (1)l +1,2) (neN),

with the generalized (or HURWITZ) Zeta function ((s,a) defined by

(1.19) ((s,a) = Z(k—I— a)™® (R(s)>1; a#0,-1,-2,...).

k=0

Clearly, we have

(1.20) (o) = (s = (22— 1) ¢ ( ) .
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It is not difficult to derive the following identity from the definition (1.19):

n—1

(1.21) ((s,a) =C(s,n+a)+ Y (k+a)™ (neN).
k=0

The function log I'(1 4 z) is known to have the following MACLAURIN series
expansion:

TL

(1.22) log T(1 4 2) = —7z+2 (2] < D).

For the function I'(1 4 z) itself, it is also known that (cf., e.g., [2, p. 27])

o0
(1.23) I'l1+4z2) = Z an 2" (2] < 1),
n=0
where
(1.24) ap=1 and mna,=—ya,_ 1+Z k a & C(k),

an empty sum being interpreted (as usual) to be nil.

The main object of this paper is to present explicit formulas for some higher-
order derivatives of the Gamma function I'(z) at z = 1 and z = 1/2. We then show
how these explicit formulas can be applied in order to evaluate several families of
definite integrals.

2. EVALUATIONS OF T'™ (1) AND I'(™(1/2)

Upon replacing z by z — 1 in (1.23), we readily obtain

(1)
n!

(2.1) ay, = (n € Ny).

Formula (2.1) and (1.24), together, immediately yield the recursion formula:

k+1
(22) TCHD(1) = 4T (1 +nlz C(k+1)TR (1) (n e Ny),

which can alternatively be derived directly from the definition (1.17) with n = 1
(and z replaced by z + 1) by applying such results of Section 1 as the relationship
(1.18) with z = 1.
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Similarly, we obtain another recursion formula:

L+t (1/2) = =T (1/2)

(2.3) (N EDM e (n—F)
+nl > o] (2 1) ¢(k+1) Tk (1/2)
= (n € No; 6 :=~+2log2).

Now, using the formulas in Section 1, we compute I'™ (1) explicitly for the
first ten derivatives:

I'(1) = —y=(1); TAQ)=+>+¢(2); TE1) =—*—3+¢(2) —2¢(3),

which is the corrected version of a formula given by CAMPBELL [1, p. 25];

PO (1) = 44 4 642 C(2) +87C(3) + 2 ¢(4);

2
PE(1) = 7~ 1077 4(2) ~ 2077 C(3) ~ 12 7C(4) ~ 20C2)<(3) — 24¢(6);
TO (1) =% + 15 ((2) +407° €(3) + 2> 7%¢(4)

1207 C(2)¢(3) + 1447 C(5) + 40(C(3)” + 5 ¢(6);

PO(1) = 7 = 2177 ((2) ~ 107*((3) ~ 2o 7C(4)
~42092 C(2)¢(3) — 5047 ((5) — 2807 (¢(3)” — —2 1¢(6)
—945¢(3)¢(4) —504¢(2)¢(5) — 720 ¢(7);

T®E (1) = 4 +28795¢(2) + 112+° ¢(3) + 945+ ¢ (4)
+11207° ¢(2)¢(3) + 1344+% ((5) + 112072 (¢(3))* + % 7% ¢(6)
+75607 ¢(3)¢(4) + 4032~ ¢(2)¢(5) + 5760~ ¢(7) + 1120((2)(((3))2
F2688C3C) + o C(8):

PO(1) = —4” =3677¢(2) - 1687°¢(3) — 17017° ((4)
—25207* ¢(2)¢(3) — 3024~* ¢(5) — 3360+° ({(3))
—3402072¢(3)¢(4) — 18144~2¢(2) ¢(5) — 259202 ¢(7)

—10080 7 ¢(2 (g(g))2 —24192~¢(3)¢(5) — 119;645 7¢(8)

)
— 57645 C(3)C(6) — 40824 ¢(4)C(5) — 25920 ¢(2) ¢(7)

—2240 (¢(3))” — 40320 ¢(9);

2 57645
-3¢

4 ¢(6)
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P10 (1) = 410 4 458 ¢(2) + 24077 ¢(3) + 283575 ¢(4) + 5040~° ¢(2)¢(3)
604897 C(5) + 89007* (C(3)” + 22 ¥ C(6) + 11340077 C(3)C(4)
+60480 3 ¢(2) ¢(5) + 864003 ¢(7) + 5040042 ¢(2) (4(3))2 + 1209602 ¢(3)¢(5)

5958225

Y2C(8) + 5764507 (3) C(6) + 408240 (4) ¢ (5) + 259200y ((2) ¢ (7)

8
+22400’y(§(3))3 + 403200~ ¢(9) + 113400 (C(S))2C(4) + 120960¢(2)¢(3)¢(5)
+72576(((5))2 + 172800¢(3)¢(7) + 423;3385 ¢(10).
The corresponding problem for T'™)(1/2) (n =1, ..., 10) yields

T(1/2) = — 57, % T®)(1/2) = 6 1 3¢(2),

% T®(1/2) = — 6%~ 96((2) — 14¢(3),

all three of which are also recorded by CAMPBELL [1, p. 25];

1w _ 2 315 .
ﬁr (1/2) = 6" + 186°¢(2) +560¢(3) + =~ C(4);
% r®(1/2) = — 6% —308°¢(2) — 1406%¢(3)

228 50() - 420¢(2)¢(3) - THC(5):

€ r©(1/2) = 65 + 456%¢(2) + 2808%¢(3) + 4725 52¢(4)
NG 2
+25205¢(2)C(3) 4 44645¢(5) + 1960(¢(3))” + 1318355 ¢(6);

% r(M(1/2) = — 67 —636°¢C(2) — 49054¢(3) — % 53¢ (4) — 88206%¢(2)¢(3)
—156246%¢(5) — 137206(¢(3))° — 9198485 5¢(6)

—TT175¢(3) C(4) — 46872¢(2)¢(5) — 91440((7);

% T®)(1/2) = 6% 4 846°¢(2) + 784°¢(3) + 1102554¢(4) 4 2352053¢(2) ¢(3)
+4166453¢(5) + 5488062 (¢(3)) + 377055 62¢(6)
+6174000 €(3) C(4) 4 3749765 ¢(2) ¢(5) + 7315208 ¢(7)

+164640¢(2) (¢(3))” + 583296 ((3) ((5) + 258589925 ¢(8);
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1 o T RN R 6 -ay 5
J=T1/2) = =6 10857 ((2) ~ 11765° ((3) — 198456° C(4)

—52920 6 ((2) ¢(3) — 93744 6* ¢(5) — 164640 5> ({(3)) ?

2758455
2
—m9maw2qn-m&7amg@)gmp2—5%@&M5qmg@)
232739325
-
——768320(((3))3——9875520((2)((7)——20603520((9)

83 C(6) — 277830062 ¢(3) ¢ (4) — 168739262 ¢(2)¢(5)

5 ¢(8) — 19309185 ¢(3) ¢(6) — 14764680 ¢ (4) ((5)

r10(1/2) = §1° 413568 ¢(2) + 168067 ¢(3) + 3307585 ¢(4)

-+10584055<(2)<(3)+—18748855<(5)+—41160054(<(3»2
13792275
+—F

+10972800 6% ¢ (7

51 C(6) + 9261000 6° ¢(3) ¢(4) + 5624640 63 ((2) ¢(5)

+ 7408800 62 ¢ (2) (¢(3))”

¢(7) +
+26248320 6% ¢(3) ¢ (5 Eﬁ%ggé%éa?g(s)
3)

¢(5) +
+193091850 8 ¢(3) ((6) 4 1476468004 ¢(4) C(5)
76832006 (¢(3))” + 987552008 ¢(2) ¢ (7) + 206035200 5 ¢(9)

+64827000 (¢(3))” C(4) + 78744960 ¢(2)¢(3)¢(5)
¢ (5))° 4 22400588155

(
4
(7) + 69745536 (¢(5 D

+153619200 ¢ (3 ¢(10),

J being defined already with (2.3).

3. APPLICATIONS

Replacing z by z + 1 in (1.1) and differentiating both sides of the resulting
equation n times with respect to z, and then setting z = 0, we obtain

(3.1) ﬂmuy:/e4a%@nw (n € No).
0
Similarly, we have
Vit

(3.2) ﬂmym:/é%@mwa (n € No).
0

Both (3.1) and (3.2) are recorded by CAMPBELL [1, p. 25].
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We next recall another explicit form of the Gamma function I'(z) (see [3, p.
243)):

(3.3) /l(log ) dt  (R(z) >0),

which follows immediately from (1.1) by setting ¢ = log (1/7).
Making use of (3.3) instead of (1.1) (or, alternatively, by setting ¢ = log (1/7)
n (3.1) and (3.2)), we obtain

a0 0= [ (e (15 ) a0 e
0

and
1 1

(3.5) ™ (1/2) :/ <log ) ’ <1og <1og 1>>n dt (n € Ny).

0

By using the computations of Section 2, each of the integral formulas (3.1),
(3.2), (3.4), and (3.5) can be expressed explicitly in terms of v and ((n), at least
forn=1, ..., 10.

We now recall a familiar integral formula:

(3.6) / P e T _rT—A) (0< RO < 1),

1+1¢ sin A7
0

which is a special case of the Beta integral (1.2) when

a=1-8=2\ (and t:l;).

Differentiating both sides of (3.6) n times with respect to A, if we employ
the familiar LEIBN1Z rule for differentiating the I'-product and set A = 1/2 in the
resulting equation, we obtain

[ Gogty
(3.7) O/(H’ngt.I()

n

0 () TR/ (e o)
k=0

It is interesting to observe that

< (log t)2n+1 -
(3.5) /Wdt—o (n € No),



Evaluation of higher-order derivatives of the Gamma function 17

which can also be shown as follows by separating the sum on the right-hand side
of (3.7) into two parts:

n 2n+1 9 +1
I2n+1) = <Z+ > )(—1)k( i )r(2"+1—k>(1/2)r<’€>(1/2)

= 2n + 1\ [y(n

£ (e (T ) TR (1 /2) R (12),
k=0

which, upon reversing the order of the latter sum, yields

n

2n 1 2n+1 on+1—
39y [CnF1) = (1+ + kZ:O ( )r( +1-k)(1/2) 1®) (1/2)
0

On the other hand, in the case of even integers, we have

oo

o 2] e dHZ vt () e a2t
3.10 )

(1) Gﬁ(r”um» (n € No),

which, in view of the results already presented in Section 2, readily yields the
following special cases:

(3.11) O]Omcitﬁ
(3.12) jmdt5”5’
(3.13) 07 (?igt’;); dt = 617
;?;;4) 07 (ihft?\; dt = 13857

T (log t)10
(3.15) ~2 0 qt = 50521 7
0/ (14 )Vt
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We conclude by remarking that the evaluations presented here may find fur-
ther applications involving (for example) computation and evaluation of some fa-
milies of definite integrals.

Acknowledgments. The present investigation was carried out during the first-
named author’s visit to the University of Victoria from August 1999 to August
2000 while he was on Study Leave from Dongguk University at Kyongju. For the
first-named author, this work was supported by the Research Funds of Dongguk
University. The second-named author was supported, in part, by the Natural Sci-
ences and Engineering Research Council of Canada under Grant OGP0007353.

REFERENCES

1. R. CAMPBELL: Les Intégrales Eulériennes et Leurs Applications. Dunod, Paris, 1966.

2. Y. L. LUKE: The Special Functions and Their Approzimations, Vol. 1. Academic Press,
New York and London, 1969.

3. E. T. WHITTAKER, G. N. WATSON: A Course of Modern Analysis: An Introduction to
the General Theory of Infinite Processes and of Analytic Functions; With an Account of

the Principal Transcendental Functions. Fourth edition. Cambridge University Press,
Cambridge, London, and New York, 1963.

Junesang Choi (Received November 16, 1999)
Department of Mathematics,

College of Natural Sciences.

Dongguk University,

Kyongju 780-714,

Korea

E-Mail: junesang@mail.dongguk.ac.kr

H. M. Srivastava

Department of Mathematics and Statistics,
University of Victoria,

Victoria, British Columbia V8W 3P4,
Canada

E-Mail: harimsri@math.uvic.ca



