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ON MAPPINGS WITH CONSERVATIVE
DISTANCES AND THE MAZUR–ULAM

THEOREM

Themistocles M. Rassias, Shuhuang Xiang

In the present paper, two cases concerning the A. D. Aleksandrov problem for

a unit distance preserving mapping between Euclidean spaces with dimension

one or between strictly convex normed vector spaces are discussed. In addition

mappings which preserve distances are also considered.

Let X and Y be normed real vector spaces. Consider the following conditions
for a mapping f : X → Y distance one preserving property (DOPP) and strong
distance one preserving property (SDOPP) (cf. [6]).

(DOPP) Let x, y ∈ X with ‖x− y‖ = 1. Then ‖f(x)− f(y)‖ = 1.
(SDOPP) Let x, y ∈ X. Then ‖f(x)− f(y)‖ = 1 if and only if ‖x− y‖ = 1.

Rassias and Semrl [6] using the definition of (SDOPP) proved the following

Theorem 1 ([6]). Let X and Y be real normed vector spaces such that one of them
has dimension greater than one. Suppose that f : X → Y is a surjective mapping
satisfying (SDOPP). Then f is an injective mapping satisfying

∣∣‖f(x)− f(y)‖ − ‖x− y‖
∣∣ ≤ 1 for all x, y ∈ X.

Moreover, f preserves distance n in both directions for any positive integer n.
They pointed out that the condition “one of the spaces has dimension greater

than one” can not be relaxed in Theorem 1. If f : X → Y is a contractive mapping,
they obtained the following

Theorem 2 ([6]). Let X and Y be real normed vector spaces such that one of them
has dimension greater than one. Suppose that f : X → Y is a Lipschitz mapping
with k = 1, i.e.

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.
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Assume also that f is a surjective mapping satisfying (SDOPP). Then f is a linear
isometry up to translation.

Theorem 2 extends the Mazur–Ulam theorem.
For the special case in Theorem 2 where X = Y = R and f : R → R is a

contractive mapping, the following theorem can be proved

Theorem 3. Suppose that f : R → R is a Lipschitz mapping with k = 1, i.e.

|f(x)− f(y)| ≤ |x− y| for all x, y ∈ R.

Assume that f is a mapping satisfying (DOPP). Then f is a linear isometry up to
translation.

Proof. Without loss of generality, assume f(0) = 0. Otherwise, we substitute
f(x)− f(0) for f(x) for all x ∈ R. Since f satisfies (DOPP), then |f(1)− f(0)| =
|1− 0| = 1. Thus f(1) = 1 or f(1) = −1.

(i) In case f(1) = 1, firstly, we will prove by induction that f(n) = n for all
nonnegative integers.

Suppose f(m) = m for any integer m with 0 ≤ m < n, where n is a positive
integer greater than one. Since |f(n) − f(n − 1)| = |f(n) − (n − 1)| = 1, then

f(n) = n − 2 or f(n) = n. Assume f(n) = n − 2. Let r =
(n− 2) + (n− 1)

2
. By

the contractive property of f , we obtain

1
2
≥ |f(r)− f(n− 2)| ≥ |f(n− 1)− f(n− 2)| − |f(r)− f(n− 1)|

≥ 1− |r − (n− 1)| = 1
2

.

Therefore |f(r) − f(n − 2)| = 1/2. Applying the same argument, it follows
that |f(r)− f(n− 1)| = 1/2. Since f(n− 2) = n− 2 and f(n− 1) = n− 1, then

f(r) =
(n− 2) + (n− 1)

2
.

Set s =
(n− 1) + n

2
. Similarly, we obtain

|f(s)− f(n− 1)| = 1
2
, |f(s)− f(n)| = 1

2
and f(s) =

(n− 2) + (n− 1)
2

.

Thus |f(r) − f(s)| = 0 and |r − s| = 1, which contradicts the fact that f satisfies
(DOPP). Hence f(n) = n for any nonnegative integer n.

Similarly, f(−1) must take the value −1. Otherwise f(−1) = 1 and
f(−1/2) = f(1/2) = 1/2, which contradicts the fact that f satisfies (DOPP).
By induction, the proof follows for f(n) = n for any negative integer n exactly for
the case of nonnegative integers we proved before.
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For any x ∈ R, there exists an integer n0 such that x ∈ [n0, n0 + 1]. Since
f : R → R is a Lipschitz mapping with k = 1, by the same argument as above, it
is true that

|f(x)− f(n0)| = |x− n0| and |f(x)− f(n0 + 1)| = |x− n0 − 1|.
Therefore together with the fact that f(n) = n for any integer n, f must satisfy
the property f(x) = x for all x ∈ R, and thus f is a linear isometry.

(ii) We will examine the case f(1) = −1. Let g(x) = −f(x) for all x ∈ R.
Then g satisfies (DOPP) and it is also a Lipschitz mapping with k = 1. By (i), g
must be a linear isometry and g(x) = x for all x ∈ R. Therefore f(x) is a linear
isometry and f(x) = −x for all x ∈ R. 2

Since any real normed vector space with dimension one is linearly isometric
to R, then according to Theorem 2 and Theorem 3, it follows

Corollary 4. Let X and Y be real normed vector spaces. Suppose that f : X → Y
is a Lipschitz mapping with k = 1 :

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.

Assume also that f is a surjective mapping satisfying (SDOPP). Then f is a linear
isometry up to translation.

If f : X → Y preserves two distances instead of one distance, Benz and
Berens in [3] proved the following:

Theorem 5 ([3]). Let X and Y be real normed vector spaces. Assume that dim X ≥
2 and Y is strictly convex. Suppose f : X → Y satisfies the property that for all
x, y ∈ X with ‖x − y‖ = ρ, then ‖f(x) − f(y)‖ ≤ ρ; and for all x, y ∈ X with
‖x− y‖ = mρ, then ‖f(x)− f(y)‖ ≥ mρ, where m is a positive integer greater than
one. Then f is a linear isometry up to translation.

If f preserves two distances with a noninteger ratio, and X and Y are real
normed vector spaces such that Y is strictly convex and dim Y ≥ 2, it is an open
problem whether or not f must be an isometry (see [5]). However, if f preserves
three distances, one can prove the following

Theorem 6. Let X and Y be real normed vector spaces. Assume that dim X ≥ 2
and Y is strictly convex. Suppose f : X → Y satisfies the property that f preserves
the three distances 1, a and 1 + a, where a is any positive constant. Then f is a
linear isometry up to translation.

Proof. (i) Let x, y ∈ X with ‖x− y‖ = 2 + a. Set

x1 = x +
1

2 + a
(y − x), x2 = x +

1 + a

2 + a
(y − x).

Then

‖x1 − x‖ = 1, ‖x1 − x2‖ = a, ‖y − x1‖ = 1 + a, ‖x2 − x‖ = 1 + a, ‖y − x2‖ = 1.
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It follows that

‖f(x1)− f(x)‖ = 1, ‖f(x1)− f(x2)‖ = a, ‖f(y)− f(x1)‖ = 1 + a,

‖f(x2)− f(x)‖ = 1 + a, ‖f(y)− f(x2)‖ = 1,

and
‖f(x2)− f(x)‖ = ‖f(x1)− f(x)‖+ ‖f(x2)− f(x1)‖ = 1 + a,

‖f(y)− f(x1)‖ = ‖f(x2)− f(x1)‖+ ‖f(y)− f(x2)‖ = 1 + a.

Since Y is strictly convex, then

f(x1) = f(x) +
1

1 + a

(
f(x2)− f(x)

)
, f(x2) = f(x1) +

a

1 + a

(
f(y)− f(x1)

)
.

Hence

f(x) =
1 + a

a
f(x1)− 1

a
f(x2) and f(y) =

1 + a

a
f(x2)− 1

a
f(x1).

Thus ‖f(y)− f(x)‖ = 2 + a for all x, y ∈ X with ‖x− y‖ = 2 + a. Therefore f also
preserves the distance 2 + a.

(ii) Let x, y ∈ X with ‖x− y‖ = 2 + 2a. Set

x1 = x +
1 + a

2 + 2a
(y − x), x2 = x +

2 + a

2 + 2a
(y − x).

Then

‖x1−x‖ = 1+a, ‖x1−x2‖ = 1, ‖y−x1‖ = 1+a, ‖x2−x‖ = 2+a, ‖y−x2‖ = a.

Since f preserves distances 1, a, 1 + a and 2 + a, in a similar way, we obtain that

‖f(y)− f(x)‖ = 2 + 2a.

Hence the mapping f preserves the distance 2 + 2a.
By (i), (ii) and Theorem 5, f must be an isometry up to translation.

Remark 1. In Theorem 6, the result is obviously true if the distances 1, a and
1 + a are substituted by a, b and a + b, where a and b are positive constants. In
particular, if the ratio of the two positive constants a and b is an integer, then f is
a linear isometry up to tranlation due to a theorem of Benz and Berens [3].

Theorem 7. Let X and Y be real normed vector spaces. Assume that Y is strictly
convex. Suppose f : X → Y satisfies (DOPP) and is a Lipschitz mapping with
k = 1, i.e.

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.

Then f is a linear isometry up to translation.
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Proof. Let x, y ∈ X with ‖x− y‖ = 1/2. Set z = x + 2(y − x). Then

‖x− z‖ = 1, ‖z − y‖ =
1
2

,

and

‖x− y‖ ≥ ‖f(x)− f(y)‖ ≥ ‖f(z)− f(x)‖ − ‖f(z)− f(y)‖
≥ 1− ‖z − y‖ ≥ 1

2
.

Hence ‖f(x)− f(y)‖ = 1/2. Similarly ‖f(z)− f(y)‖ = 1/2 and

‖f(z)− f(x)‖ = ‖f(z)− f(y)‖+ ‖f(y)− f(x)‖ = 1.

Because of the fact Y is strictly convex, then

f(y) =
f(x) + f(z)

2
and ‖f(y)− f(x)‖ =

1
2
.

Hence f preserves distances 1 and 1/2. Applying a similar method as in the proof
of Theorem 6, the mapping f preserves distance n in both directions for any pos-
itive integer n. Since f is a contractive mapping, it is easy to verify that f is an
isometry due to the proof of Theorem 5 (see [6]). Therefore f is a linear isometry
up to translation due to a theorem of Baker [1]. 2

A generalization of Theorem 7 was obtained independently and before us by
Yumei [7] in the following form:

Theorem 8. Let X and Y be real normed vector spaces. Assume that Y is strictly
convex. Suppose f : X → Y satisfies (DOPP) and

‖f(x)− f(y)‖ ≤ ‖x− y‖ whenever x, y ∈ X satisfy ‖x− y‖ ≤ 1.

Then f is a linear isometry up to translation.

Remark 2. G. Ding has pointed out to us that in Theorem 8, the condition

“ ‖f(x)− f(y)‖ ≤ ‖x− y‖ whenever x, y ∈ X satisfy ‖x− y‖ ≤ 1. ”

can be replaced by the condition “for some positive constant β, the mapping f
satisfies the property:

‖f(x)− f(y)‖ ≤ ‖x− y‖ whenever x, y ∈ X satisfy ‖x− y‖ ≤ β ”

and that still f is also a linear isometry up to translation. Beacause of the fact, we
can choose a positive integer n such that nβ > 1, it can be shown that f preserves
distance 1/n.
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If f : Rn → Rm preserves some distance, it follows that n ≤ m. This is
true because Rm has equilateral n–simplices if and only if n ≤ m. Rassias [4] has
proved the following result:

Theorem 9 ([4]). For any integer n ≥ 1, there exists an integer nm such that
N ≥ nm implies that there exists a map f : Rn → RN which satisfies the condition
(DOPP) but is not an isometry.

A counterexample that f : R2 → R8 satisfies (DOPP) but f is not an
isometry has been given in [4]. That is, for arbitrary three points p1, p2, p3 in R2

forming an equilateral triangle with unit length, then f(p1), f(p2) and f(p3) also
form an equilateral triangle with unit length, but f is not an isometry.

However, for arbitrary three points p1, p2, p3 in R2 forming an isosceles
triangle with the ratio between the base with unit length and the height of the
triangle or the ratio between the oblique line with unit length and the height of
the triangle being an even integer, if f(p1), f(p2) and f(p3) also make an isosceles
triangle with the same size, then f must be a linear isometry up to translation due
to the following theorem.

Theorem 10. Let X and Y be real Hilbert spaces with dim X ≥ 2. Suppose
f : X → Y satisfies the property that

(i) f preserves the distances a, b with the ratio of a and b being
√

4n2 − 1
n

for
some positive integer n; or

(ii) f preserves the distances a, b with the ratio of a and b being
√

n2 + 1
2n

for
some positive integer n with n > 1.

Then f is a linear isometry up to translation.

Proof. (i) Without loss of generality, suppose that f preserves the two distances√
4n2 − 1 and n. For the case n = 1, the property follows due to a theorem of

Xiang [8].
For the case n > 1, let p2, p4 in X with ‖p4 − p2‖ = 1. Since dim X ≥ 2,

then one can select p1, p3 in X such that p1, p2, p3, p4 in X form a parallelogram
with ‖p2 − p1‖ = ‖p3 − p4‖ = ‖p3 − p2‖ = ‖p4 − p1‖ = n, ‖p1 − p3‖ =

√
4n2 − 1,

‖p2 − p4‖ = 1

Because of the fact that f preserves the dis-
tances

√
4n2 − 1 and n, then

‖f(p2)− f(p1)‖ = ‖f(p3)− f(p2)‖
= ‖f(p4)− f(p3)‖ = ‖f(p4)− f(p1)‖ = n,

PPPPPPq��
��
��1��

��
��1PPPPPPqp1

p2

p3

p4

(1− 1)

and ‖f(p3) − f(p1)‖ =
√

4n2 − 1. Let x = f(p1) − f(p2), y = f(p3) − f(p2) and
z = f(p4)− f(p2). Then

‖x‖ = ‖y‖ = ‖z−x‖ = ‖z−y‖ = n, ‖x−y‖ =
√

4n2 − 1 and (x+y, x+y) = 1.
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Hence (z, x) = (z, y) =
1
2

(z, z). If we use the Cauchy–Schwarz inequality, we
obtain that

‖z‖2 = (z, x + y) ≤ ‖z‖ ‖x + y‖ = ‖z‖.
Thus ‖f(p4)− f(p2)‖ ≤ 1. By Theorem 5, f is a linear isometry up to translation.

(ii) In a similar way, if f preserves the distances a, b with the ratio of a and b
being

√
n2 + 1/(2n) for some positive integer n with n > 1, it follows that f must

be a linear isometry up to translation. 2

From Beckman and Quarles [2] it follows that if f : Rn → Rn satisfies
(DOPP) for some positive integer n with n ≥ 2, then the distance

√
2(n + 1)/n

is also preserved by f . Generally, if f : X → Y satisfies (DOPP), where X
and Y are real Hilbert spaces with dim X ≥ n and n ≥ 2, let p, q in X with
‖p − q‖ =

√
2(n + 1)/n, then ‖f(p) − f(q)‖ ≤

√
2(n + 1)/n. In fact, suppose p,

p1, · · ·, pn and q, p1, · · ·, pn form two equilateral n− simplices with unit side and
‖p−q‖ =

√
2(n + 1)/n. Let z = f(p)−f(q), xi = f(p)−f(pi) and yi = f(pi)−f(q)

for i = 1, 2, · · · , n, then ‖xi‖ = ‖yi‖ = ‖xi − xj‖ = 1(i 6= j) and z = xi + yi. Thus
by (z − xi, z − xi) = (z − yi, z − yi) = 1, we can get

(z, z) = 2(z, xi) =
2
n

(
z,

n∑
i=1

xi

)
≤ 2

n

∥∥∥∥
n∑

i=1

xi

∥∥∥∥ · ‖z‖ ≤
√

2(n + 1)/n ‖z‖.

Therefore ‖f(p) − f(q)‖ ≤
√

2(n + 1)/n. Hence by Theorem 5, we obtain the
following

Theorem 11. Let X and Y be real Hilbert spaces with dimX ≥ n and n ≥ 2.
Suppose f : X → Y satisfies (DOPP) and preserves the distance k

√
2(n + 1)/n for

some positive integer k with k ≥ 2. Then f is a linear isometry up to translation.
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