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SOME INTEGRAL INEQUALITIES

Bai-Ni Guo, Xin Jiang

In this article, using Cauchy’s inequality and the arithmetic mean—geometric mean

inequality, some integral inequalities are proved.

1. MAIN RESULTS

Three integral inequalities below will be verified:

Theorem 1. Let @ be a domain in R" and f,g € L(£2) such that I(f) > 0 and
I(g) > 0, where

(1) I(f) :/f(x) dx.

Further, let h : Q — R such that h? € L(Q). If

(2) I(f)I(gh) = I(g)I(fh),

then

(3) I(fh*)1(g)* + I(gh*)I(f)* > I(FR)L(gh)I(f + g),

the equality case is valid if and only if h is constant.

Corollary. Under the conditions of Theorem 1, we have

1)1eh*) | 1))
Iah) A

The equality in (4) holds if and only if h is constant.

(4)

> I((f +g)h).

Theorem 2. Let Q be a domain in R" and f,g € L(Q) satisfying I(f) > 0 and
I(g) > 0, furthermore h? € L(Q). Then

(5) LR (@) + Hgh* )T (A > 2[1(fh) I (gh) [V T(F)1(g)-
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2. PROOFS OF MAIN RESULTS

From (2), it is deduced that
LNHIS +9)h) = IS +49),
H)I((f+9)h) = I(gh)I(f+g).

Therefore, the right side of inequality (3) can be rewritten as
(6)  I(FRI(gh)I(f +g) = I(F)I(gh)I((f + g)h) = L) I(FR)I((f + 9)h).

From (2), it is easy to see that I(fh) and I(gh) have the same sign. If they
all equal to zero, then the inequality (3) holds clearly. Without loss of generality,
suppose they are positive, then, from (6), we have

()P 1(fh*) + (NI I(gh?)
Hgh) I(FRI(f +9)

) _ 1 [U(g)]zf(fhz) n [f(f)]zf(ghz)]
I((F+g9)h) L L(9)I(fh) I(f)1(gh)
_ 1 [I(g)f(fhz)Jr I(f )I(ghz)]
I((f+g)n) L 1(/R) Igh) |’
Using CAUCHYs inequality and (2) yields
I(/k?) 1) I(gh)
a 1 20 - 1)
I(gh*) _ I(gh) _ I(fh)
¥ Teh 2 1) - 10

Substitution of (8) and (9) into (7) produces (3).

Since (8) and (9) take equality if and only if ~2(x) is constant, so does inequal-
ity (3) if and only if h(z) is constant. The proof of Theorem 1 is completed.

By CaucCHY’s inequality, we obtain

[L(fh)]?

0 and  I(gh®) >

I(fh*) >

Therefore
() () + L(gh®) ()]
()P LU (NP (gh)]?
1(f) 1(g)
> 2 1(gh (W) VT I(]),
note that in the final line, the arithmetic meanfgeometric mean inequality is used.
This completes the proof of Theorem 2.
The Corollary is deduced from substitution of (6) into (3).
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