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ON SHARP BOUNDS OF THE SPECTRAL

RADIUS OF GRAPHS

Bolian Liu

The spectral radius of a graph is the spectral radius of its adjacency matrix. In

this paper, some sharp bounds of the spectral radius of graphs that depend only

on vertex degrees are obtained.

1. INTRODUCTION

Let D be a digraph without loops and with vertex set fv1; v2; : : : ; vng. Its
adjacency matrixA(D) is de�ned to be the n�n matrix (aij), where aij = 1 if there
is an arc from vi to vj, and aij = 0 otherwise. Let ri (si) be the out-degree (resp.
in-degree) of vi, i = 1; 2; : : : ; n. Clearly, ri is i-th row sum of A(D), while si is the
i-th column sum of A(D). A digraph is said to be \k-balanced" if jri � sij � k

for i = 1; 2; : : : ; n. A 0-balanced digraph with ri = si = r for i = 1; 2; : : :; n is
called strong balanced digraph. It follows immediately that if D is a simple graph
(undirected graph without loop and multiline), then A(D) is a symmetric (0; 1)
matrix with zero trace. We shall denote the characteristic polynomail of D by

p(D) = det (xI �A(D)) =
nP

i=0

aix
n�i:

Let �1; �2; : : : ; �n be the roots of p(D): �(D) = max (j�1j; j�2j; : : : ; j�nj) is the
spectral radius of D. Since A(D) is a symmetric matrix, �(D) is an eigenvalue of
det (XI � A(D)), say �1. Since A(D) is a symmetric matrix, its eigenvalues are
real, and may be ordered as

�1 � �2 � : : : � �n:

Hence we shall denote the spectral radius of D by �1.

The following result on bounds of spectral radius have been known (see[1]).

Theorem A (Hong). Let D be a 0-balanced strongly connected digraph with n

vertices and m arcs. Then

�1 �
p
m� n+ 1

with equality i� D is the star K1;n�1 or the complete graph Kn:

1991 Mathematics Subject Classi�cation: 05C50

55



56 Bolian Liu

Theorem B (Hong). Let G be a connected graph with n vertices and e edges.

Then

�1 �
p
2e� n+ 1

with equality i� G is the star K1;n�1or the complete graph Kn:

In this paper we generalized the above result as follows.

Theorem 1. Let D be a k-balanced digraph with n vertices and m arcs, r = min
1�i�n

ri;

S = max
1�i�n

si. Then

�1 �
p
m � r (n� 1) + (r � 1)S + k

with equality if and only if D is the star K1;n�1 or a strongly balanced digraph.

Theorem 2. Let G be a simple graph with n vertices and e edges, and r =
min
1�i�n

ri; R = max
1�i�n

ri. Then

�1 �
p
2e � r (n� 1) + (r � 1)R

with equality if and if G is the star K1;n�1or the complete graph Kn:

2. MAIN RESULT

The proof of Theorem 1.

Let Ai denote the i-th row of A(D). Since D is "k-balanced" we have

jri � sij � k:

Let X = (x1; x2; : : : ; xn)
T be a unit positive eigenvector of A corresponding

to the eigenvalue �1. For i = 1; 2; : : : ; n, let X(i) denote the vector obtained from
X by replacing with 0 those components xj for which aij = 0.

Since AX = �1X, we have

AiX (i) = AiX = �1xi:

By the Cauchy-Schwartz inequality, for i = 1; 2; : : : ; n, we have

� 2
1 x

2
1 = jAiX (i)j2 � jAij2 jX (i)j2 = ri

�
1� P

j:aij=0

x 2
j

�
:

Summing the above inequalities, we have

� 2
1 = � 2

1

nP
j=1

x 2
j �

nP
i=1

ri

�
1� P

j:aij=0

x 2
j

�
= m �

nP
i=1

ri
P

j:aij=0

x 2
j ;
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(1)

nP
i=1

ri
P

j:aij=0

x 2
j =

nP
i=1

rix
2
i +

nP
i=1

ri
P

j:aij=0

x 2
j

�
nP

i=1

rix
2
i + r

nP
i=1

P
j:aij=0;j 6=i

x 2
j

=
nP

i=1

rix
2
i + r

nP
i=1

(n� 1� si)x
2
i

=
nP

i=1

(ri � si)x
2
i � (r � 1)

nP
i=1

six
2
i + r(n � 1)

� �
nP

i=1

jri � sijx 2
i � (r � 1)

nP
i=1

Sx 2
i + r(n� 1)

� �k � (r � 1)S + r(n� 1):

Therefore, we have �1 �
p
m� (n� 1) + (r � 1)S + k:

In order equality to hold, all inequalities in the above argument must be
equalities. In particular, from (1) we must have

nP
i=1

ri
P

j:aij=0

x 2
j = r

nP
i=1

P
j:aij=0;j 6=i

x 2
j

and

nP
i=1

(ri � si)x
2
i = �

nP
i=1

kx 2
i ; (r � 1)

nP
i=1

six
2
i = (r � 1)

nP
i=1

Sx 2
i :

Hence, for each i we have

(i) ri = r or ri = n� 1; (ii) ri � si = �jri � sij = �k;
(iii) if r 6= 1; then si = S:

Note that
P

ri =
P

si; we have either k = 0, ri = si = r = S or n � 1,
i = 1; 2; : : :; n or k = 0, ri = si = 1 or n� 1. That implies either D is a 0-balanced
digraph with ri = si = r or n � 1, i = 1; 2; : : : ; n: Conversely, it is easy to verify
that the equality �1 = r holds in the strongly balanced digraph with ri = si = r

and in K1;n�1.

Example. A directed cycle of order n is a strongly balanced digraph, m = n; ri =
si = 1 for i = 1; 2; : : : ; n, k = 0 and

�1 =
p
n� (n� 1) = 1:

Let T5 be a strongly balanced tournarment with 5 vertices. Then n = 5, m = 10,
ri = si = 2, k = 0, and

�1 =
p
10� 2 (5� 1) + (2� 1) � 2 + 0 = 2

but by Brualdi and Hoffman's bound (see[2]) �1 � 3, since m = 32 + 1.
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Example. For the digraph D with adjacency matrix0
BB@

0 1 1 0
0 0 1 0
0 0 0 1
1 1 0 0

1
CCA

we have n = 4;m = 6; r = 1; S = 2; k = 1 and thus

�1 �
p
6� 1 � (4� 1) + 1 =

p
4 = 2:

By de�nition p(D) = f(�) = �4�4��1. Since f(1:3) < 0 and f(�) > 0 for � � 1:4,
we have

1:3 < �1 < 1:4:

Corollary 1.1. Let D be a 0-balanced strongly connected digraph with n vertices

and m arcs. Then

�1 �
p
m � r (n � 1) + (r � 1)S:(1)

Remark. If D is a 0-balanced strongly connected digraph without vertices of
outdegree 0, then r � 1 and

�1 �
p
m � r (n� 1� S) � S �

p
m � n+ 1 + S � S =

p
m� n+ 1:

This is Theorem A.

Corollary 1.2. Let G be a simple connected graph with n vertices and e edges.

Then

�1 �
p
2e� r(n� 1) + (r � 1)S(2)

with equality if and only if G is the star K1;n�1 or a regular graph.

Proof. G is a 0-balanced digraph. Thus m = 2e. Now (3) follows from (2).

The following example shows that the bound (3) improves that in Theorem B.

Example. Let

A(D) =

0
BBBBB@

0 1 0 0 1 1

1 0 1 1 0 0

0 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 0 0 1 1 0

1
CCCCCA
:

Then n = 6; e = 10; r = 3; S = 4. By (3) we have

�1 �
p
2� 10� 3� 5 + 2� 4 =

p
13:

But by Theorem B

�1 �
p
2� 10� 6 + 1 =

p
15:

Remark. If G is a simple connected graph without isolated vertices, then r � 1: By (3)

we have
�1 �

p
2e� n+ 1:
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This is Theorem B.

Corollary 1.3. Let G be a simple planar connected graph with n vertices and m edges.

Then

�1 �
p

2 (3n� 6)� r (n� 1) + (r � 1)S:(3)

Proof. Note that m � 3n� 6 for a planar graph, and so we have (4).

Corollary 1.4. Let G be a simple connected graph with n vertices and e edges. Then

nP
i=2

� 2

i (G) = 2e� � 2

1 � r (n� 1)� (r � 1)S = r (n� 1� S) + S(4)

with equality if and only if

(a) G is a regular graph ;

(b) G is the star K1;n�1:
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