ON SHARP BOUNDS OF THE SPECTRAL RADIUS OF GRAPHS

Bolian Liu

The spectral radius of a graph is the spectral radius of its adjacency matrix. In this paper, some sharp bounds of the spectral radius of graphs that depend only on vertex degrees are obtained.

1. INTRODUCTION

Let D be a digraph without loops and with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Its adjacency matrix $A(D)$ is defined to be the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if there is an arc from v_{i} to v_{j}, and $a_{i j}=0$ otherwise. Let $r_{i}\left(s_{i}\right)$ be the out-degree (resp. in-degree) of $v_{i}, i=1,2, \ldots, n$. Clearly, r_{i} is i-th row sum of $A(D)$, while s_{i} is the i-th column sum of $A(D)$. A digraph is said to be " k-balanced" if $\left|r_{i}-s_{i}\right| \leq k$ for $i=1,2, \ldots, n$. A 0 -balanced digraph with $r_{i}=s_{i}=r$ for $i=1,2, \ldots, n$ is called strong balanced digraph. It follows immediately that if D is a simple graph (undirected graph without loop and multiline), then $A(D)$ is a symmetric $(0,1)$ matrix with zero trace. We shall denote the characteristic polynomail of D by

$$
p(D)=\operatorname{det}(x I-A(D))=\sum_{i=0}^{n} a_{i} x^{n-i}
$$

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the roots of $p(D) . \rho(D)=\max \left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right)$ is the spectral radius of D. Since $A(D)$ is a symmetric matrix, $\rho(D)$ is an eigenvalue of $\operatorname{det}(X I-A(D))$, say λ_{1}. Since $A(D)$ is a symmetric matrix, its eigenvalues are real, and may be ordered as

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

Hence we shall denote the spectral radius of D by λ_{1}.
The following result on bounds of spectral radius have been known (see[1]). Theorem A (Hong). Let D be a 0 -balanced strongly connected digraph with n vertices and m arcs. Then

$$
\lambda_{1} \leq \sqrt{m-n+1}
$$

with equality iff D is the star $K_{1, n-1}$ or the complete graph K_{n}.

[^0]Theorem B (Hong). Let G be a connected graph with n vertices and e edges. Then

$$
\lambda_{1} \leq \sqrt{2 e-n+1}
$$

with equality iff G is the star $K_{1, n-1}$ or the complete graph K_{n}.
In this paper we generalized the above result as follows.
Theorem 1. Let D be a k-balanced digraph with n vertices and m arcs, $r=\min _{1<i<n} r_{i}$, $S=\max _{1 \leq i \leq n} s_{i}$. Then

$$
\lambda_{1} \leq \sqrt{m-r(n-1)+(r-1) S+k}
$$

with equality if and only if D is the star $K_{1, n-1}$ or a strongly balanced digraph.
Theorem 2. Let G be a simple graph with n vertices and e edges, and $r=$ $\min _{1 \leq i \leq n} r_{i}, R=\max _{1 \leq i \leq n} r_{i}$. Then

$$
\lambda_{1} \leq \sqrt{2 e-r(n-1)+(r-1) R}
$$

with equality if and if G is the star $K_{1, n-1}$ or the complete graph K_{n}.

2. MAIN RESULT

The proof of Theorem 1.
Let A_{i} denote the i-th row of $A(D)$. Since D is " k-balanced" we have

$$
\left|r_{i}-s_{i}\right| \leq k .
$$

Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit positive eigenvector of A corresponding to the eigenvalue λ_{1}. For $i=1,2, \ldots, n$, let $X(i)$ denote the vector obtained from X by replacing with 0 those components x_{j} for which $a_{i j}=0$.

Since $A X=\lambda_{1} X$, we have

$$
A_{i} X(i)=A_{i} X=\lambda_{1} x_{i}
$$

By the Cauchy-Schwartz inequality, for $i=1,2, \ldots, n$, we have

$$
\lambda_{1}^{2} x_{1}^{2}=\left|A_{i} X(i)\right|^{2} \leq\left|A_{i}\right|^{2}|X(i)|^{2}=r_{i}\left(1-\sum_{j: a_{i j}=0} x_{j}^{2}\right) .
$$

Summing the above inequalities, we have

$$
\lambda_{1}^{2}=\lambda_{1}^{2} \sum_{j=1}^{n} x_{j}^{2} \leq \sum_{i=1}^{n} r_{i}\left(1-\sum_{j: a_{i j}=0} x_{j}^{2}\right)=m-\sum_{i=1}^{n} r_{i} \sum_{j: a_{i j}=0} x_{j}^{2}
$$

$$
\begin{align*}
\sum_{i=1}^{n} r_{i} \sum_{j: a_{i j}=0} x_{j}^{2} & =\sum_{i=1}^{n} r_{i} x_{i}^{2}+\sum_{i=1}^{n} r_{i} \sum_{j: a_{i j}=0} x_{j}^{2} \\
& \geq \sum_{i=1}^{n} r_{i} x_{i}^{2}+r \sum_{i=1}^{n} \sum_{j: a_{i j}=0, j \neq i} x_{j}^{2} \\
& =\sum_{i=1}^{n} r_{i} x_{i}^{2}+r \sum_{i=1}^{n}\left(n-1-s_{i}\right) x_{i}^{2} \tag{1}\\
& =\sum_{i=1}^{n}\left(r_{i}-s_{i}\right) x_{i}^{2}-(r-1) \sum_{i=1}^{n} s_{i} x_{i}^{2}+r(n-1) \\
& \geq-\sum_{i=1}^{n}\left|r_{i}-s_{i}\right| x_{i}^{2}-(r-1) \sum_{i=1}^{n} S x_{i}{ }^{2}+r(n-1) \\
& \geq-k-(r-1) S+r(n-1)
\end{align*}
$$

Therefore, we have $\lambda_{1} \leq \sqrt{m-(n-1)+(r-1) S+k}$.
In order equality to hold, all inequalities in the above argument must be equalities. In particular, from (1) we must have

$$
\sum_{i=1}^{n} r_{i} \sum_{j: a_{i j}=0} x_{j}^{2}=r \sum_{i=1}^{n} \sum_{j: a_{i j}=0, j \neq i} x_{j}^{2}
$$

and

$$
\sum_{i=1}^{n}\left(r_{i}-s_{i}\right) x_{i}^{2}=-\sum_{i=1}^{n} k x_{i}^{2}, \quad(r-1) \sum_{i=1}^{n} s_{i} x_{i}^{2}=(r-1) \sum_{i=1}^{n} S x_{i}^{2} .
$$

Hence, for each i we have
(i) $r_{i}=r$ or $r_{i}=n-1 ; \quad$ (ii) $r_{i}-s_{i}=-\left|r_{i}-s_{i}\right|=-k$;
(iii) if $r \neq 1$, then $s_{i}=S$.

Note that $\sum r_{i}=\sum s_{i}$, we have either $k=0, r_{i}=s_{i}=r=S$ or $n-1$, $i=1,2, \ldots, n$ or $k=0, r_{i}=s_{i}=1$ or $n-1$. That implies either D is a 0 -balanced digraph with $r_{i}=s_{i}=r$ or $n-1, i=1,2, \ldots, n$. Conversely, it is easy to verify that the equality $\lambda_{1}=r$ holds in the strongly balanced digraph with $r_{i}=s_{i}=r$ and in $K_{1, n-1}$.
Example. A directed cycle of order n is a strongly balanced digraph, $m=n, r_{i}=$ $s_{i}=1$ for $i=1,2, \ldots, n, k=0$ and

$$
\lambda_{1}=\sqrt{n-(n-1)}=1
$$

Let T_{5} be a strongly balanced tournarment with 5 vertices. Then $n=5, m=10$, $r_{i}=s_{i}=2, k=0$, and

$$
\lambda_{1}=\sqrt{10-2(5-1)+(2-1) \cdot 2+0}=2
$$

but by Brualdi and Hoffman's bound (see[2]) $\lambda_{1} \leq 3$, since $m=3^{2}+1$.

Example. For the digraph D with adjacency matrix

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

we have $n=4, m=6, r=1, S=2, k=1$ and thus

$$
\lambda_{1} \leq \sqrt{6-1 \cdot(4-1)+1}=\sqrt{4}=2
$$

By definition $p(D)=f(\lambda)=\lambda^{4}-4 \lambda-1$. Since $f(1.3)<0$ and $f(\lambda)>0$ for $\lambda \geq 1.4$, we have

$$
1.3<\lambda_{1}<1.4
$$

Corollary 1.1. Let D be a 0 -balanced strongly connected digraph with n vertices and m arcs. Then

$$
\begin{equation*}
\lambda_{1} \leq \sqrt{m-r(n-1)+(r-1) S} . \tag{1}
\end{equation*}
$$

Remark. If D is a 0 -balanced strongly connected digraph without vertices of outdegree 0 , then $r \geq 1$ and

$$
\lambda_{1} \leq \sqrt{m-r(n-1-S)-S} \leq \sqrt{m-n+1+S-S}=\sqrt{m-n+1}
$$

This is Theorem A.
Corollary 1.2. Let G be a simple connected graph with n vertices and edges. Then

$$
\begin{equation*}
\lambda_{1} \leq \sqrt{2 e-r(n-1)+(r-1) S} \tag{2}
\end{equation*}
$$

with equality if and only if G is the star $K_{1, n-1}$ or a regular graph.
Proof. G is a 0 -balanced digraph. Thus $m=2 e$. Now (3) follows from (2).
The following example shows that the bound (3) improves that in Theorem B.
Example. Let

$$
A(D)=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Then $n=6, e=10, r=3, S=4$. By (3) we have

$$
\lambda_{1} \leq \sqrt{2 \times 10-3 \times 5+2 \times 4}=\sqrt{13} .
$$

But by Theorem B

$$
\lambda_{1} \leq \sqrt{2 \times 10-6+1}=\sqrt{15}
$$

Remark. If G is a simple connected graph without isolated vertices, then $r \geq 1$. By (3) we have

$$
\lambda_{1} \leq \sqrt{2 e-n+1}
$$

This is Theorem B.
Corollary 1.3. Let G be a simple planar connected graph with n vertices and m edges. Then

$$
\begin{equation*}
\lambda_{1} \leq \sqrt{2(3 n-6)-r(n-1)+(r-1) S} \tag{3}
\end{equation*}
$$

Proof. Note that $m \leq 3 n-6$ for a planar graph, and so we have (4).
Corollary 1.4. Let G be a simple connected graph with n vertices and e edges. Then

$$
\begin{equation*}
\sum_{i=2}^{n} \lambda_{i}^{2}(G)=2 e-\lambda_{1}^{2} \geq r(n-1)-(r-1) S=r(n-1-S)+S \tag{4}
\end{equation*}
$$

with equality if and only if
(a) G is a regular graph;
(b) G is the star $K_{1, n-1}$.

REFERENCES

1. Yuan Hong: Bounds of eigenvalues of graphs, Discrete Math. 123 (1993), No. 1-3, 65-74.
2. R. A. Brauldi, A.J. Hoffman: On the spectral radius of $(0,1)$-matrices. Linear Algebra Appl. 65 (1985), 133-146.
3. D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs. Academic Press, New York, 1980.

[^0]: 1991 Mathematics Subject Classification: 05C50

