A REMARK ON THE LEFT-FACTORIAL HYPOTHESIS

Winfried Kohnen

An elementary reformulation of the left-factorial hypothesis is given.

1. INTRODUCTION

The so-called left-factorial hypothesis (a problem posed by D. Kurepa [2] and still open today) states that for every odd prime p one has

$$
\begin{equation*}
\sum_{\nu=0}^{p-1} \nu!\not \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

In [1] A. Ivić and Ž. MiJajlović discuss this hypothesis and some reformulations in detail. For example, according to [3], (1) is equivalent to

$$
\begin{equation*}
\sum_{\nu=0}^{p-1} \frac{(-1)^{\nu}}{\nu!} \not \equiv 0(\bmod p) \tag{2}
\end{equation*}
$$

(this, in fact, is not very difficult to see). Other elementary reformulations are due to Z. Šami [4] and J. Stanković [5].

In this short note, using the equivalence of (1) and (2) we would like to give another elementary reformulation of (1) in terms of certain recurrence sequences modulo p (resp. a certain matrix non-congruence modulo p).

2. STATEMENT OF RESULT AND PROOF

Theorem. Let p be an odd prime. Then the following statemens are equivalent:
i) The left-factorial hypothesis holds for p, i.e. one has

$$
\sum_{\nu=0}^{p-1} \nu!\not \equiv 0(\bmod p)
$$

[^0]ii) For any given integers a_{1}, a_{0} define a sequence $\left(a_{n}\right)_{n \geq 0}$ recurrently by
\[

$$
\begin{equation*}
a_{n}:=\left(1-\frac{1}{n}\right) a_{n-1}+\frac{1}{n} a_{n-2} \quad(n \geq 2) \tag{3}
\end{equation*}
$$

\]

Then

$$
\left(a_{p-1}, a_{p-2}\right) \not \equiv\left(a_{1}, a_{0}\right)(\bmod p)
$$

if and only if

$$
a_{1} \not \equiv a_{0}(\bmod p)
$$

iii) If

$$
A_{n}:=\left(\begin{array}{cc}
1-\frac{1}{n} & \frac{1}{n} \\
1 & 0
\end{array}\right) \quad(n \geq 2)
$$

and

$$
A:=A_{p-1} \cdot A_{p-2} \cdots A_{2},
$$

then

$$
A \not \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod p)
$$

Proof. With $a_{1}=0, a_{0}=1$ we find from (3) that

$$
a_{n}=\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!}
$$

for all n. Indeed, for $n \geq 2$ one has

$$
\left(1-\frac{1}{n}\right) \sum_{\nu=0}^{n-1} \frac{(-1)^{\nu}}{\nu!}+\frac{1}{n} \sum_{\nu=0}^{n-2} \frac{(-1)^{\nu}}{\nu!}=\sum_{\nu=0}^{n-1} \frac{(-1)^{\nu}}{\nu!}-\frac{1}{n} \cdot \frac{(-1)^{n-1}}{(n-1)!}=\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!}
$$

In particular,

$$
a_{p-1}=\sum_{\nu=0}^{p-1} \frac{(-1)^{\nu}}{\nu!}
$$

and

$$
a_{p-2}=a_{p-1}-\frac{1}{(p-1)!} \equiv a_{p-1}+1(\bmod p)
$$

where in the last line we have used Wilson's congruence.
Since (1) is equivalent to (2), we therefore see that if i) fails then also $i i$) fails.
Let us look at $i i)$. Cleary, by definition (3), if $a_{1} \equiv a_{0}(\bmod p)$ then $\left(a_{p-1}, a_{p-2}\right) \equiv\left(a_{1}, a_{0}\right)(\bmod p)$.

Now suppose that $i i)$ does not hold, i.e. we can find $\left(a_{1}, a_{0}\right) \in \mathbf{Z}^{2}$ with $a_{1} \not \equiv a_{0}(\bmod p)$ and such that $\left(a_{p-1}, a_{p-2}\right) \equiv\left(a_{1}, a_{0}\right)(\bmod p)$.

Then the matrix $\left(\begin{array}{ll}1 & a_{1} \\ 1 & a_{0}\end{array}\right)$ is invertibile module p, hence there exists integers λ and μ such that

$$
(0,1) \equiv \lambda(1,1)+\mu\left(a_{1}, a_{0}\right)(\bmod p)
$$

Applying (3) succesively we obtain from (4)

$$
\sum_{\nu=0}^{p-1} \frac{(-1)^{\nu}}{\nu!} \equiv \lambda+\mu a_{p-1}(\bmod p) \equiv \lambda+\mu a_{1}(\bmod p) \equiv 0(\bmod p)
$$

Hence i) fails.
The equivalence of $i i$) and $i i i$) is obvious. Indeed, rewrite (3) as

$$
\binom{a_{n}}{a_{n-1}}=A_{n} A_{n-1} \ldots A_{2}\binom{a_{1}}{a_{0}} \quad(n \geq 2)
$$

and observe that each of the matrices A_{n} fixes the column $\binom{1}{1}$. Hence if $\left.i i\right)$ does not hold, then A modulo p fixes two modulo p linearly independent vectors, hence is congurent to the unit matrix modulo p, and the converse is equally true.

This proves the Theorem.

REFERENCES

1. A. Ivić, Ž. Mijajlović: On Kurepa's problems in number theory, Publ. Inst. Math. (Beograd) 57 (71) (1995), 19-28.
2. Đ. Kurepa: On the left-factorial function ! n, Math. Balkan. 1 (1971), 147-153.
3. Ž. Mijajlović: On some formulas involving $!n$ and the verification of the $!n$ -hypothesis by use of computers, Publ. Inst. Math. (Beograd) 47 (61), (1990), 24-32.
4. Z. Šami: On the M-hypotesis of Kurepa, Math. Balkan. 4 (1974), 530-532.
5. J. Stanković: Über einige Relationen zwischen Fakultäten, und den linken Fakultäten, Math. Balkan. 3 (1973), 488-497.

Mathematisches Institut,

[^0]: 1991 Mathematics Subject Classification: 11B65, 05A10

