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SOME COMBINATORIAL ASPECTS
OF DIFFERENTIAL OPERATION

COMPOSITION ON THE SPACE Rn

Branko J. Malešević

In this paper we present a recurrent relation for counting meaningful compositions
of the higher-order differential operations on the space Rn (n=3,4,...) and extract
the non-trivial compositions of order higher than two.

1. DIFFERENTIAL FORMS AND OPERATIONS ON THE SPACE R3

It is well known that the first-order differential operations grad, curl and div
on the space R3 can be introduced using the operator of the exterior differentia-
tion d of differential forms [1]:

Ω0(R3)
d−→ Ω1(R3)

d−→ Ω2(R3)
d−→ Ω3(R3),

where Ωi(R3) is the space of differential forms of degree i = 0, 1, 2, 3 on the space
R3 over the ring of functions A = {f : R3 → R | f ∈ C∞(R3)}. In the consideration,
which follows, we give definitions of the first-order differential operations.

Let us notice that one-dimensional spaces Ω0(R3) and Ω3(R3) are isomorphic
to A and let ϕ0 : Ω0(R3) → A, ϕ3 : Ω3(R3) → A be the corresponding isomorphisms.
Next, the set of vector functions B = {f =(f1, f2, f3) : R3 → R3 | f1, f2, f3 ∈ C∞(R3)},
over the ring A, is three-dimensional. It is isomorphic to Ω1(R3) and Ω2(R3). Let
ϕ1 : Ω1(R3) → B, ϕ2 : Ω2(R3) → B be the corresponding isomorphisms. In that
case, the compositions ϕ−1

0 ◦ϕ3 : Ω3(R3) → Ω0(R3) and ϕ−1
1 ◦ϕ2 : Ω2(R3) → Ω1(R3)

are isomorphisms of the corresponding spaces of differential forms. The first-order
differential operations are defined via the operator of the exterior differentiation d
of differential forms in the following form:

∇1 = ϕ1◦d◦ϕ−1
0 : A → B, ∇2 = ϕ2◦d◦ϕ−1

1 : B → B, ∇3 = ϕ3◦d◦ϕ−1
2 : B → A.

Therefore we obtain explicit expressions for the first order differential operations
∇1, ∇2, ∇3 on the space R3 in the following form:

(1) grad f = ∇1f =
∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3 : A → B,

(2) curlf = ∇2f =
(

∂f3

∂x2
− ∂f2

∂x3

)
e1 +

(
∂f1

∂x3
− ∂f3

∂x1

)
e2 +

(
∂f2

∂x1
− ∂f1

∂x2

)
e3 : B → B,

(3) divf = ∇3f =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
: B → A.
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Let us count meaningful compositions of differential operations ∇1,∇2,∇3.
Consider the set of functions Θ = {∇1,∇2,∇3}. Let us define a binary relation
ρ ”to be in composition” with ∇iρ∇j = > iff the composition ∇j ◦∇i is meaningful
(∇i,∇j ∈ Θ). The Cayley’s table of this relation reads:

(4)

ρ ∇1 ∇2 ∇3

∇1 ⊥ > >
∇2 ⊥ > >
∇3 > ⊥ ⊥ .

We form the graph of relation ρ as follows. If ∇iρ∇j = > then we put the node ∇j

under the node ∇i. Let us mark ∇0 as nowhere-defined function ϑ, with domain
and range being the empty set [2]. We shall consider ∇0ρ∇i = > (i = 1, 2, 3). For
the set of functions Θ ∪ {∇0} our graph is the tree with the root in the node ∇0.
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¢
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q∇3 q∇1 ¢
¢¢
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q∇3 f(3) = 8

··TT ··TT ··TT ··TT ··q∇2 TTq∇3 q∇1 f(4) = 13

··TT ··TTFig. 1 f(5) = 21

Let fi(k) be a number of meaningful compositions of the kth-order beginning with
∇i. Let f(k) be a number of meaningful composition of the kth-order of operations
over Θ. Then f(k) = f1(k) + f2(k) + f3(k). Based on partial self similarity of the
tree (Fig. 1), which is formed according to Cayley’s table (4), we get equalities:

f1(k) = f2(k − 1) + f3(k − 1) ∧ f2(k) = f2(k − 1) + f3(k − 1) ∧ f3(k) = f1(k − 1).

Now, a recurrent relation for f(k) can be derived as follows:

f(k) = f1(k) + f2(k) + f3(k)

=
(
f1(k − 1) + f2(k − 1) + f3(k − 1)

)
+

(
f3(k − 1) + f2(k − 1)

)
= f(k − 1) +

(
f1(k − 2) + f2(k − 2) + f3(k − 2)

)
= f(k − 1) + f(k − 2).

Based on the initial values: f(1) = 3, f(2) = 5, f(3) = 8 we conclude that f(k) =
Fk+3, where is Fibonacci’s number of order k + 3.

Let us note that ∇2 ◦∇1 = 0 and ∇3 ◦∇2 = 0, because d2 = 0. On the other
hand, the compositions ∇1 ◦∇3, ∇2 ◦∇2 and ∇3 ◦∇1 are not annihilated, because
of ϕ−1

0 ◦ ϕ3 6= i and ϕ−1
1 ◦ ϕ2 6= i. Thus, as in the paper [2], we conclude that the

non-trivial compositions are of the following form:

(5)
(∇1◦)∇3 ◦ · · · ◦ ∇1 ◦ ∇3 ◦ ∇1,
∇2 ◦ ∇2 ◦ · · · ◦ ∇2 ◦ ∇2 ◦ ∇2,
(∇3◦)∇1 ◦ · · · ◦ ∇3 ◦ ∇1 ◦ ∇3.

As non-trivial compositions we consider those which are not identical to the zero
function. Terms in parentheses are included in for an odd number of terms and are
left out otherwise.
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2. DIFFERENTIAL FORMS AND OPERATIONS ON THE SPACE Rn

Let us present a recurrent relation for counting meaningful compositions of
the higher-order differential operations on the space Rn (n = 3, 4, . . .) and extract
the non-trivial compositions of order higher than two. Let us form the following
sets of functions:

Ai = {f : Rn → R(n
i)|f1, . . . , f(n

i)
∈ C∞(Rn)}

for i = 0, 1, . . . , m where m = [n/2]. Let Ωi(Rn) be a set of differential forms of
degree i = 0, 1, . . . , n on the space Rn. Let us notice that Ωi(Rn) and Ωn−i(Rn),
over ring A0, are spaces of the same dimension

(
n
i

)
, for i = 0, 1, . . . , m. They can

be identified with Ai, using the corresponding isomorphisms:

ϕi : Ωi(Rn) → Ai (0 ≤ i ≤ m) and ϕn−i : Ωn−i(Rn) → Ai (0 ≤ i < n−m).

We define the first-order differential operations on the space Rn

via the operator of the exterior differentiation d as follows:

∇i = ϕi ◦ d ◦ ϕ−1
i−1 (1 ≤ i ≤ n). (1 ≤ i ≤ m)

Ωi−1

6ϕ−1
i−1

Ai−1
-∇i

Ai
?
ϕi

Ωi-d

Therefore, we obtain the first order differential operations on the space Rn, de-
pending on pairity of dimension n, in the following form:

n = 2m : ∇1 : A0 → A1

∇2 : A1 → A2

..

.
∇i : Ai → Ai+1

..

.
∇m : Am−1 → Am

∇m+1 : Am → Am−1

..

.
∇n−j : Aj+1 → Aj

..

.
∇n−1 : A2 → A1

∇n : A1 → A0,

n = 2m + 1 : ∇1 : A0 → A1

∇2 : A1 → A2

..

.
∇i : Ai → Ai+1

...
∇m : Am−1 → Am

∇m+1 : Am → Am

∇m+2 : Am → Am−1

..

.
∇n−j : Aj+1 → Aj

..

.
∇n−1 : A2 → A1

∇n : A1 → A0.

Consider the set of functions Θ = {∇1,∇2, . . . ,∇n}. Let us define a binary relation
ρ ”to be in composition” with ∇iρ∇j = > iff the composition ∇j ◦∇i is meaningful
(∇i,∇j ∈ Θ). It is not difficult to check that Cayley’s table of this relation is
determined with:

(6) ∇iρ∇j =

{
> : (j = i + 1) ∨ (i + j = n + 1),
⊥ : (j 6= i + 1) ∧ (i + j 6= n + 1).

Let us form an adjacency matrix A = [aij ] ∈ {0, 1}n×n of the graph, determined
by relation ρ. Let fi(k) be a number of meaningful compositions of the kth-order
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beginning with ∇i (notice that fi(1) = 1 for i = 1, . . . , n). Let f(k) be a number
of meaningful composition of the kth-order of operations over Θ. Then f(k) =
f1(k)+. . .+fn(k). Notice that the following is true:

(7) fi(k) =
n∑

j=1

aij · fj(k − 1),

for i = 1, . . . , n. Based on (7) we form the system of recurrent equations:

(8)




f1(k)
...

fn(k)


 =




a11 · · · a1n

...
...

an1 · · · ann


 ·




f1(k − 1)
...

fn(k − 1)




.
If vn = [ 1 · · · 1 ]1×n then:

(9) f(k) = vn ·




f1(k)
...

fn(k)




.
So, the expression:

(10) f(k) = vn · Ak−1 · vT
n .

follows from (8) and (9). Reducing the system of the recurrent equations (8), for
any of the functions fi(k) we have:

(11) α0fi(k) + α1fi(k − 1) + · · ·+ αnfi(k − n) = 0 (k > n),

where α0, . . . , αn are coefficients of the characteristic polynomial Pn(λ) = |A−λI| =
α0λ

n + . . .+αn. Thus, we conclude that the function f(k) =
n∑

i=1

fi(k) also satisfies:

(12) α0f(k) + α1f(k − 1) + · · ·+ αnf(k − n) = 0 (k > n).

Hence, the following theorem holds.

Theorem 1. The number of meaningful differential operations, on the space Rn

(n = 3, 4, . . .), of the order higher than two, is determined by the formula (10), i.e.
by the recurrent formula (12).

In n-dimensional space Rn, for dimensions n = 3, 4, 5, . . . , 10, using the pre-
vious theorem we form a table of the corresponding recurrent formula:

Dimension: Recurrent relations for the number of meaningful compositions:
n = 3 f(i + 2) = f(i + 1) + f(i)
n = 4 f(i + 2) = 2f(i)
n = 5 f(i + 3) = f(i + 2) + 2f(i + 1)− f(i)
n = 6 f(i + 4) = 3f(i + 2)− f(i)
n = 7 f(i + 5) = f(i + 3) + 3f(i + 2)− 2f(i + 1)− f(i)
n = 8 f(i + 4) = 4f(i + 2)− 3f(i)
n = 9 f(i + 5) = f(i + 4) + 4f(i + 3)− 3f(i + 2)− 3f(i + 1) + f(i)
n = 10 f(i + 6) = 5f(i + 4)− 6f(i + 2) + f(i)
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Let us determine non-trivial higher-order meaningful compositions on the
space Rn. For isomorphisms ϕk we have:

(13) ϕ−1
k ◦ ϕn−k 6= i,

for k = 1, 2, . . . , n and 2k 6= n. Then, based on (6) and (13), all second-order
compositions are given by the formula:

(14) ∇j ◦ ∇k =





0 : j = k + 1,
gj,k : (k + j = n + 1) ∧ (2k 6= n),
ϑ : (j 6= k + 1) ∧ (k + j 6= n + 1);

where 0 is a trivial composition, gj,k is a non-trivial second-order composition and
ϑ is a nowhere-defined function for j, k = 1, . . . , n. Notice that in gj,k = ∇j ◦∇k =
ϕn+1−k ◦ d ◦ ϕ−1

n−k ◦ ϕk ◦ d ◦ ϕ−1
k−1 (j =n+1−k ∧ 2k 6=n) and switching the terms

is impossible, because in that way we get nowhere-defined function ϑ. Hence, we
conclude that the following theorem holds.

Theorem 2. All meaningful non-trivial differential operations on the space Rn

(n = 3, 4, . . .), of order higher than, two are given in the form of the following com-
positions:

(15)
(∇k) ◦ ∇j ◦ ∇k ◦ · · · ◦ ∇j ◦ ∇k,
(∇j) ◦ ∇k ◦ ∇j ◦ · · · ◦ ∇k ◦ ∇j ,

with to the condition k + j = n + 1 and 2k, 2j 6= n for k, j = 1, 2, . . . , n. Terms in
parentheses are included in for an odd number of terms and are left out otherwise.
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