A BASIC SEPARATION ON A SET WITH APARTNESS

R. Milošević, D. A. Romano, M. Vinčić

This investigation is in constructive mathematics. In this short note we take into consideration a basic separation on a set X with an apartness which is a generalization of diversity relation on the power-set $P(X)$.

1. INTRODUCTION

Following Bishop [1] we regard the equality relation on a set X as conventional. A diversity relation on a set X is a binary relation \neq satisfying the properties $\urcorner(x \neq x), x \neq y \Rightarrow y \neq x$. Note that, by our implicit assumption of extensionality a diversity relation satisfies the condition

$$
x \neq y \wedge y=z \Rightarrow x \neq z
$$

A diversity that also satisfies the condition

$$
x \neq z \Rightarrow(\forall y)(x \neq y \vee y \neq z)
$$

is called an appartness. Let $Y \subseteq X$ and $x \in X$. We define $x \# Y$ if and only if $(\forall y \in Y)(y \neq x)$ and $\bar{Y}=\{x \in \bar{X}: x \# Y\}$. Equality and diversity relations on the power-set $\boldsymbol{P}(X)$ defined by

$$
\begin{gathered}
A=B \Leftrightarrow A \subseteq A \wedge B \subseteq A \\
A \neq B \Leftrightarrow(\exists a \in A)(a \# B) \vee(\exists b \in B)(b \# A) .
\end{gathered}
$$

In this paper we shall give definition of the notion of basic separation. Further, we shall develop a theory of base and subbase of basic separation and we shall give some characteristics of these notions.

For all notions and notations, which will be used here, we refer to the books $[\mathbf{1}, \mathbf{3}, \mathbf{5}]$ and to the papers $[\mathbf{2}, \mathbf{4}]$.

[^0]
2. BASIC SEPARATIONS

With a following definition we shall introduce a notion of basic separation on a set X with apartness which is a generalization of diversity relation on the power-set $\boldsymbol{P}(X)$.
Definition 1. A basic separation on a set X is a relation d on $\boldsymbol{P}(X)$ satisfies

$$
\begin{align*}
& d \#(A, A) \tag{d1}\\
& A d B \Rightarrow B d A \tag{d2}\\
& A d B \Rightarrow A \subseteq \bar{B} \tag{d3}\\
& A d(B \cup C) \Leftrightarrow A d B \wedge A d C \tag{d4}
\end{align*}
$$

Examples
1° Let we define $A d_{0} B$ if and only if $A \subseteq \bar{B}$ and $d_{0} \#(A, A)$. Then we have:
(ii) $A d_{0} B \Leftrightarrow A \subseteq \bar{B} \Rightarrow \bar{A} \supseteq \overline{\bar{B}} \wedge \overline{\bar{B}} \supseteq B \Rightarrow B \subseteq \bar{A} \Leftrightarrow B d_{0} A$.
(iv) $A d_{0}(B \cup C) \Leftrightarrow A \subseteq \overline{B \cup C}=\bar{B} \cup \bar{C} \Leftrightarrow A \subseteq \bar{B} \wedge A \subseteq \bar{C} \Leftrightarrow A d_{0} B \wedge A d_{0} C$.
2° If we define $A d_{1} B$ if and only if $\overline{\bar{A}} \subseteq \bar{B}$ and $d_{1} \#(A, A)$, we have
(ii) $A d_{1} B \Leftrightarrow \overline{\bar{A}} \subseteq \bar{B} \Rightarrow \overline{\bar{B}} \subseteq \overline{\bar{A}}=\bar{A} \Leftrightarrow B d_{1} A$.
(iii) $A d_{1} B \Leftrightarrow \overline{\bar{A}} \subseteq \bar{B} \Rightarrow \overline{\bar{A}} \subseteq \bar{B} \wedge A \subseteq \overline{\bar{A}} \Rightarrow A \subseteq \bar{B}$.
(iv) $A d_{1}(B \cup C) \Leftrightarrow \overline{\bar{A}} \subseteq \overline{B \cup C}=\bar{B} \cap \bar{C} \Leftrightarrow \overline{\bar{A}} \subseteq \bar{B} \wedge \overline{\bar{A}} \subseteq \bar{C} \Leftrightarrow A d_{1} B \wedge A d_{1} C$.

Note that is in effect $A d_{1} B \Rightarrow A d_{0} B$.
Let d_{a} and d_{b} be two basic separation on a set X. If $A d_{b} B \Rightarrow A d_{a} B$, we say that d_{a} is finer that d_{b} and d_{b} is coarser than d_{a}.

We start with the following theorem:
Theorem 1. Let d be a basic separation on a set X with appartness. Then:
(1) $A d B \Rightarrow A d_{0} B$.
(2) $\quad(A \cup B) d C \Leftrightarrow A d C \wedge B d C$.
(3) $\quad A d B \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B \Rightarrow A^{\prime \prime} d B^{\prime \prime}$.

Proof.

$$
\begin{array}{rlr}
(A \cup B) d C & \text { by }(\mathrm{d} 2) & \\
\Leftrightarrow C d(A \cup B) & \text { by }(\mathrm{d} 4) & \\
\Leftrightarrow C d A \wedge C d B & \text { by }(\mathrm{d} 2) . & \\
A A d C \wedge B d C & & \tag{3}\\
A d B \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B & \Rightarrow A d B=\left(A \cup A^{\prime \prime}\right) d B & \\
& \Rightarrow A d B \wedge A^{\prime \prime} d B & \text { by }(\mathrm{d} 2) \\
& \Rightarrow A^{\prime \prime} d B=A^{\prime \prime} d\left(B \cup B^{\prime \prime}\right) & \\
& \Rightarrow A^{\prime \prime} d B \wedge A^{\prime \prime} d B^{\prime \prime} & \text { by }(\mathrm{d} 4) \\
& \Rightarrow A^{\prime \prime} d B^{\prime \prime} . \square . &
\end{array}
$$

Corollary 1.1. Let d be a nonempty basic separation on X. Then $A d \emptyset$ and $\emptyset d B$ if $A d B$.

Corollary 1.2. Let d be a basic separation on X. Then $x \neq y$ if $\{x\} d\{y\}$ for x, y in X.

Proof. Let x, y be arbitrary elements of X and let $\{x\} d\{y\}$. Then, by (d3), we have $\{x\} \subseteq \overline{\{y\}}$, i.e. $x \#\{y\}$. This means that $x \neq y$.

Corollary 1.3. Let d be a basic separation on X and $B \subseteq X$ and $x \in X$ such that $\{x\} d B$. Then $x \# B$.

Proof. This immediately follows from (d3).
We close this section with results which are related to family of basic separations.

Theorem 2. Let $\left\{d_{i}: i \in I\right\}$ be a nonempty family of basic separations on a set X with apartness. Then the relation $d=\bigcap_{i \in I} d_{i}$ is a basic separation on X coarser than each $d_{i}(i \in I)$.
Corollary 2.1. The collection of all basic separations on set X forms a semilattice under the natural ordering.

3. BASE OF BASIC SEPARATION

Basic separation may be characterised by its base. This notion is given in next definition.

Definition 2. A base of a basic separation is a binary relation b on $\boldsymbol{P}(X)$ defined by axioms:

$$
\begin{align*}
& b \#(A, A) \tag{b1}\\
& (A, B) \in b \Rightarrow(B, A) \in b \tag{b2}\\
& (A, B) \in b \Rightarrow A \subseteq \bar{B} \tag{b3}\\
& (A, B) \in b \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B \Rightarrow\left(A^{\prime \prime}, B^{\prime \prime}\right) \in b \tag{b4}
\end{align*}
$$

If b_{1} and b_{2} are two basic separations on a set X with apartness such that $(A, B) \in$ $b_{2} \Rightarrow(A, B) \in b_{1}$, we say that b_{1} is finer than b_{2} and b_{2} is coarser than b_{1}.

Having a base of basic separation on a set X with apartness we can construct a basic separation on X. In the next theorem we shall give construction of that kind.

Theorem 3. Let b be a base of a basic separation on a set X. Then the relation $d=d(b)$, defined by $A d B$ if for even one finite cover $\left\{A_{i}: i \in I_{n}\right\}$ and $\left\{B_{j}: j \in I_{m}\right\}$ of A and B respectively, we have $\left(\forall i \in I_{n}\right)\left(\forall j \in I_{m}\right)\left(\left(A_{i}, B_{j}\right) \in b\right)$, is a basic separation on X.

Proof.

$$
\begin{align*}
A d B & \Leftrightarrow A=\bigcup_{i=1}^{n} A_{i} \wedge B=\bigcup_{j=1}^{m} B_{j} \wedge(\forall i)(\forall j)\left(\left(A_{i}, B_{j}\right) \in b\right) \tag{ii}\\
& \Leftrightarrow A=\bigcup_{i=1}^{n} A_{i} \wedge B=\bigcup_{j=1}^{m} B_{j} \wedge(\forall j)(\forall i)\left(\left(B_{j}, A_{i}\right) \in b\right) \\
& \Leftrightarrow B d A . \\
A d B & \Leftrightarrow A=\bigcup_{i=1}^{n} A_{i} \wedge B=\bigcup_{j=1}^{m} B_{j} \wedge(\forall i)(\forall j)\left(\left(A_{i}, B_{j}\right) \in b\right) \tag{iii}\\
& \Rightarrow A=\bigcup_{i=1}^{n} A_{i} \wedge B=\bigcup_{j=1}^{m} B_{j} \wedge(\forall i)(\forall j)\left(A_{i} \subseteq \bar{B}_{j}\right) \\
& \Rightarrow A=\bigcup_{i=1}^{n} A_{i} \subseteq \bigcap_{j=1}^{m} \bar{B}_{j}=\bigcup_{j=1}^{m} B_{j}=\bar{B} .
\end{align*}
$$

(iv) Let $A d B$ and $A d C$ and let $A=\bigcup_{i=1}^{n} A_{i}^{\prime}, B=\bigcup_{j=1}^{m} B_{j}\left((\exists j)\left(B_{j} \neq \emptyset\right)\right)$ such that $(\forall i)(\forall j)\left(\left(A_{i}^{\prime}, B_{j}\right) \in b\right)$. Also suppose that $A=\bigcup_{k=1}^{p} A_{k}^{\prime \prime}, C=\bigcup_{s=1}^{q} C_{s}\left((\exists s)\left(C_{s} \neq \emptyset\right)\right)$ such that $(\forall k)(\forall s)\left(\left(A_{k}^{\prime \prime}, C_{s}\right) \in b\right)$. Let we define

$$
\begin{aligned}
& A_{i j}=A_{i}^{\prime} \cup A_{j}^{\prime \prime} \quad(i=1, \ldots, n ; j=1, \ldots, p), \\
& D_{t}=B_{t} \quad(t=1, \ldots, m) \\
& D_{m+r}=C_{r} \quad(r=1, \ldots, q) .
\end{aligned}
$$

Then, by (b4), we have $(\forall x)(\forall y)\left(\left(A_{x}, D_{y}\right) \in b\right)$, i.e. we have $A d(B \cup C)$.
Conversely, let $A d(B \cup C)$. If $A=\bigcup_{i=1}^{n} A_{i} \quad\left((\exists i)\left(A_{i} \neq \emptyset\right)\right)$ and $B \cup C=$ $\bigcup_{j=1}^{m} D_{j}$ with $(\forall i)(\forall j)\left(\left(A_{i}, D_{j}\right) \in b\right)$, then for $B=\bigcup_{j=1}^{m}\left(B \cap D_{j}\right)=\bigcup_{j=1}^{m} B_{j}$ and $C=\bigcup_{j=1}^{m}\left(C \cap D_{j}\right)=\bigcup_{j=1}^{m} C_{j}$ holds $(\forall i)(\forall j)\left(\left(A_{i}, B_{j}\right) \in b\right)$ and $(\forall i)(\forall j)\left(\left(A_{i}, C_{j}\right) \in b\right)$, i.e. hold $A d B$ and $A d C$.

Corollary 3.1. Let b be a base of a basic separation on a set X with apartness. Then $(A, B) \in b \Rightarrow A d(b) B$.

We end this section with the following results.
Theorem 4. Let $\left\{d_{i}: i \in I\right\}$ be a nonempty family of basic separations on a set X with apartness. Then the relation $b=\bigcup_{i \in I} d_{i}$ is a base of a basic separation on X.
Corollary 4.1. Let $\left\{d_{i}: i \in I\right\}$ be a nonempty family of basic separations on a set X with apartness. Then the relation $d=d\left(\bigcup_{i \in I} d_{i}\right)$ is a basic separation on X coarser than each d_{i}.
Corollary 4.2. The collection of all basic separations on a set X with apartness forms a lattice under the natural ordering.

4. SUBBASE OF BASIC SEPARATION

There is a possibility for reducing of number of base axioms. In that case we shall get a new notion. In the following definition we introduce that notion.

Definition 3. A subbase of a basic separation on a set X with apartness is a binary relation s on $\boldsymbol{P}(X)$ such that

$$
\begin{equation*}
(A, A) \# s, \tag{s1}
\end{equation*}
$$

$$
\begin{equation*}
(A, B) \in s \Rightarrow A \subseteq \bar{B} \tag{s2}
\end{equation*}
$$

$$
\begin{equation*}
(A, B) \in s \Rightarrow(B, A) \in s \tag{s3}
\end{equation*}
$$

The next theorem describes the way how we construct a base of basic separation on X with apartness if it is given a subbase.

Theorem 5. If s is subbase of a basic separation, then the relation $b=b(s)$ on $\boldsymbol{P}(X)$, defined by

$$
(A, B) \in b \Leftrightarrow\left(\exists A^{\prime} \supseteq A\right)\left(\exists B^{\prime} \supseteq B\right)\left(\left(A^{\prime}, B^{\prime}\right) \in s\right),
$$

is a base of a basic separation on X.

Proof.

(i) $\quad(A, B) \in b \Leftrightarrow\left(\exists A^{\prime} \supseteq A\right)\left(\exists B^{\prime} \supseteq B\right)\left(\left(A^{\prime}, B^{\prime}\right) \in s\right)$

$$
\Leftrightarrow\left(\exists B^{\prime} \supseteq B\right)\left(\exists A^{\prime} \supseteq A\right)\left(\left(B^{\prime}, A^{\prime}\right) \in s\right)
$$

$$
\Leftrightarrow(B, A) \in b
$$

(ii) $\quad(A, B) \in b \Leftrightarrow\left(\exists A^{\prime} \supseteq A\right)\left(\exists B^{\prime} \supseteq B\right)\left(\left(A^{\prime}, B^{\prime}\right) \in s\right)$

$$
\Rightarrow A^{\prime} \subseteq \overline{B^{\prime}} \wedge A \subseteq A^{\prime} \wedge \overline{B^{\prime}} \subseteq \bar{B}
$$

$$
\Rightarrow A \subseteq \bar{B}
$$

(iii) $\quad(A, B) \in b \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B \Leftrightarrow$

$$
\left(\exists A^{\prime} \supseteq A\right)\left(\exists B^{\prime} \supseteq B\right)\left(\left(A^{\prime}, B^{\prime}\right) \in s\right) \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B \Rightarrow
$$

$$
\left(\exists A^{\prime} \supseteq A \supseteq A^{\prime \prime}\right)\left(\exists B^{\prime} \supseteq B \supseteq B^{\prime \prime}\right)\left(\left(A^{\prime}, B^{\prime}\right) \in s\right) \Rightarrow
$$

$$
\left(A^{\prime \prime}, B^{\prime \prime}\right) \in b
$$

Corollary 5.1. Let s be a subbase of a basic separation on a set X with apartness. Then $(A, B) \in s \Rightarrow(A, B) \in b(s)$.

5. d-STRONGLY EXTENSIONAL FUNCTION

In this section we define and discuss d-strongly extensional function.
Definition 4. Let d_{X} and d_{Y} be basic separations on sets X and Y respectively and let $f: X \rightarrow Y$ be a total function. We say that the function f is d-strongly extensional function if and only if $f(A) d_{Y} f(B)$ implies $A d_{X} B$ for every A, B in $\boldsymbol{P}(X)$.

We shall give a criterion to be d-strongly extensional function $f: X \rightarrow Y$ of spaces with basic separations by subbase of d_{Y}.

Theorem 6. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two spaces with basic separations and let s_{Y} be a subbase for d_{Y}. A function $f: X \rightarrow Y$ is d-strongly extensional if and only if $(C, D) \in s_{Y}$ implies $f^{-1}(C) d_{X} f^{-1}(D)$.
Proof. 1° Let $f: X \rightarrow Y$ be d-strongly extensional function, and let C and D be subsets of Y such that $(C, D) \in s_{Y}$. Then $(C, D) \in b\left(s_{Y}\right)$ and $C d_{Y} D$. As $f f^{-1}(C) \subseteq$ C and $f f^{-1}(D) \subseteq D$, we have that $f f^{-1}(C) d_{Y} f f^{-1}(D)$ implies $f^{-1}(C) d_{X} f^{-1}(D)$.
2° Let A and B be subsets of X such that $f(A) d_{Y} f(B)$. Then

$$
\begin{aligned}
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge(\forall i)(\forall j)\left(\left(C_{i}, D_{j}\right) \in b\left(s_{Y}\right)\right) \Leftrightarrow \\
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge(\forall i)(\forall j)\left(\exists C_{i}^{\prime} \supseteq C_{i}\right)\left(\exists D_{j}^{\prime} \supseteq D_{j}\right)\left(\left(C_{i}^{\prime}, D_{j}^{\prime}\right) \in s_{Y}\right) \Rightarrow \\
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge(\forall i)(\forall j)\left(\exists C_{i}^{\prime}\right)\left(\exists D_{j}^{\prime}\right)\left(f^{-1}\left(C_{i}^{\prime}\right) d_{X} f^{-1}\left(D_{j}^{\prime}\right)\right) \Rightarrow \\
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge(\forall i)(\forall j)\left(f^{-1}\left(C_{i}\right) d_{X} f^{-1}\left(D_{j}\right)\right) \Rightarrow \\
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge \bigcup f^{-1}\left(C_{i}\right) d_{X} \bigcup f^{-1}\left(D_{j}\right) \Leftrightarrow \\
& f(A)=\bigcup C_{i} \wedge f(B)=\bigcup D_{j} \wedge f^{-1}\left(\bigcup C_{i}\right) d_{X} f^{-1}\left(\bigcup D_{j}\right) \Leftrightarrow \\
& f^{-1}(f(A)) d_{X} f^{-1}(f(B)) \wedge A \subseteq f^{-1}(f(A)) \wedge B \subseteq f^{-1}(f(B)) \Rightarrow \\
& A d_{X} B . \quad \square
\end{aligned}
$$

The next theorem is an application of the theorem 6 .
Theorem 7. Let \boldsymbol{F} be a nonempty family, each $f \in \boldsymbol{F}$ being a strongly extensional function on X to space $\left(Y_{f}, d_{f}\right)$ with basic separation d_{f}. Then the relation b on $\boldsymbol{P}(X)$, defined by

$$
(A, B) \in b \Leftrightarrow(\exists f \in \boldsymbol{F})\left(f(A) d_{f} f(B)\right),
$$

is a base of a basic separation on X. Further, each member of \boldsymbol{F} is d-strongly extensional.

Proof.

$$
\begin{aligned}
(A, B) \in b & \Leftrightarrow(\exists f \in \boldsymbol{F})\left(f(A) d_{f} f(B)\right) \\
& \Leftrightarrow(\exists f \in \boldsymbol{F})\left(f(B) d_{f} f(B)\right) \\
& \Leftrightarrow(B, A) \in b .
\end{aligned}
$$

As

$$
\begin{aligned}
(A, B) \in b & \Leftrightarrow(\exists f \in \boldsymbol{F})\left(f(A) d_{f} f(B)\right) \\
& \Rightarrow(\exists f \in \boldsymbol{F})(f(A) \subseteq \overline{f(B)})
\end{aligned}
$$

we have

$$
\begin{aligned}
a \in A & \Rightarrow f(a) \in f(A) \subseteq \overline{f(B)} \\
& \Rightarrow(\forall x \in B)(f(a) \neq f(x)) \\
& \Rightarrow(\forall x \in B)(a \neq x) \\
& \Leftrightarrow a \in \bar{B}
\end{aligned}
$$

So, $A \subseteq \bar{B}$.

$$
\begin{aligned}
(A, B) \in b \wedge A^{\prime \prime} \subseteq A \wedge B^{\prime \prime} \subseteq B & \Rightarrow(\exists f \in F)\left(f(A) d_{f} f(B)\right) \\
& \Rightarrow(\exists f \in F)\left(f\left(A^{\prime \prime}\right) d_{f} f\left(B^{\prime \prime}\right)\right) \\
& \Rightarrow\left(A^{\prime \prime}, B^{\prime \prime}\right) \in b
\end{aligned}
$$

Corollary 7.1. Let $\left\langle\left(X_{i}, d_{i}\right)\right\rangle_{i=1}^{n}$ be a finite family of spaces with basic separations. Then the relation b on $\prod_{i=1}^{n} X_{i}$, defined by

$$
(A, B) \in b \Leftrightarrow\left(\exists p_{k}\right)\left(p_{k}(A) d_{k} p_{k}(B)\right)
$$

where $p_{k}: \prod_{i=1}^{n} X_{i} \rightarrow X_{k}$ is a projection on X_{k}, is a base of basic separation on $\prod_{i=1}^{n} X_{i}$.

6. BASIC UNIFORMITY

In this section we study basic uniformities associated with basic separations.
Definition 5. ([2]) A basic uniformity of X is a subfamily \boldsymbol{U} of $\boldsymbol{P}\left(X^{2}\right)$ such that:
(1) $\quad(\forall R \in \boldsymbol{U})\left(I_{X} \subseteq R\right)$,
(2) $\quad(\forall R \in \boldsymbol{U})\left(R^{-1} \in \boldsymbol{U}\right)$,
(3) $\quad(\forall R, S \in \boldsymbol{U})(\forall A \in \boldsymbol{P}(X))(\exists T \in \boldsymbol{U})(T(A) \subseteq R(A) \cap S(A))$,
(4) $\quad(\forall R \in \boldsymbol{U})\left(R \subseteq S \wedge S \in \boldsymbol{P}\left(X^{2}\right) \Rightarrow S \in \boldsymbol{U}\right)$.

Subfamily \boldsymbol{B} of \boldsymbol{U} is called a base for a basic uniformity \boldsymbol{U} if and only if for each element R of \boldsymbol{U} there exists an element S of \boldsymbol{B} such that $S \subseteq R$.

Subfamily \boldsymbol{S} of \boldsymbol{U} is a subbase for a basic uniformity \boldsymbol{U} on X if and only if the family \boldsymbol{B} of all finite intersections of elements of \boldsymbol{S} is a base for \boldsymbol{U}.

Theorem 8. Let \boldsymbol{U} be a basic uniformity on X. Then the relation $s=s(\boldsymbol{U})$ on X, defined by

$$
A s B \Leftrightarrow(\exists R \in \boldsymbol{U})(R(A) \subseteq \bar{B}) \wedge(\exists S \in \boldsymbol{U})(S(B) \subseteq \bar{A})
$$

is a subbase of basic separation on X.

Proof.

(i) $\quad A s B \Rightarrow(\exists R \in \boldsymbol{U})(R(A) \subseteq \bar{B})$

$$
\Rightarrow A \subset \bar{B} \quad \text { by }(1)
$$

(ii) $\quad A s B \Leftrightarrow(\exists R \in \boldsymbol{U})(R(A) \subseteq \bar{B}) \wedge(\exists S \in \boldsymbol{U})(S(B) \subseteq \bar{A})$

$$
\Leftrightarrow B s A .
$$

Note that for the subbase $s=s(\boldsymbol{U})$ also holds:

$$
\begin{aligned}
A s B \wedge A s C & \Rightarrow(\exists R \in \boldsymbol{U})(R(A) \subset \bar{B}) \wedge(\exists S \in \boldsymbol{U})(S(A) \subseteq \bar{C}) \\
& \Rightarrow(\exists T \in \boldsymbol{U})(T(A) \subseteq R(A) \cap S(A) \subseteq \bar{B} \cap \bar{C}=\overline{B \cup C})
\end{aligned}
$$

Theorem 9. Let s be a subbase for a basic separation on a set X with apartness. Then the family

$$
S=S(s)=\{\overline{A \times B \cup B \times A}: A, B \in \boldsymbol{P}(X) \wedge A s B\}
$$

is a subbase for a basic uniformity on X.
Proof. It is clearly that $(\overline{A \times B \cup B \times A})^{-1}=\overline{A \times B \cup B \times A}$ if $A s B$. Let x be an element of X and let (u, v) be an arbitrary element of $A \times B \cup B \times A$, where $A, B \in \boldsymbol{P}(A)$ and $A s B$. Then $(u, v) \in A \times B$ or $(u, v) \in B \times A$. Then $u \neq v$ because $A s B \Rightarrow A \subseteq \bar{B}$. Thus $u \neq x \vee x \neq v$, i.e. $(x, x) \neq(u, v)$. So, $I_{X} \subseteq \overline{A \times B \cup B \times A}$.

REFERENCES

1. E. Bishop: Fundations of constructive analysis. McGraw-Hill, New York 1967.
2. G. Di Maio, S. Naimpally: A class of D-proximites. Riserche di Mathematica, Vol. 38 (2) (1989), 273-282.
3. R. Mines, F. Richman, W. Ruitenburg: A course of constructive algebra. Springer, New York 1988.
4. D. A. Romano: Equality and coequality relations on the Cartesian product of sets. Z. Math. Logik Grundl. Math., 34 (5) (1988), 471-480.
5. A. S. Troelstra, D. van Dalen: Constructivism in mathematics. An introduction. Volume 2, North-Holland, Amsterdam 1988.

Banja Luka University,
(Received July 1, 1996)
Faculty of Philosophy,
Department of Mathematics and Informatics,
78000 Banja Luka, Bana Lazarevića 1,
Republic of Srpska
daniel@urcbl.bl.ac.yu

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 03F55, 04A05

