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ABOUT THE EQUIVALENCE OF SOME

FUNCTIONAL EQUATIONS

N. Neamt�u

The purpose ot this paper is to demonstrate the equivalence of Loba-

chevsky's functional equation
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with functional equations
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0. The following properties of Lobachevsky's functional equation are

known [1, 3]:

a) Functional equation (1) is equivalent with

(4) f(x+ y)f(x � y) = f(x)2;

b) For every solution f of (1) we have: f > 0; x 2 R if f(0) > 0; f < 0 if

f(0) < 0 and f = 0 if f(0) = 0;

c)

(5) f(x)f(�x) = f(0)2;
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d) The most general solution of (1) is

(6) f(x) = f(0)g(x);

where g : R! R is the most general solution ofCauchy's multiplicative functional

equation

(7) g(x + y) = g(x)g(y);

e) Let f; f(0) 6= 0 be a solution of (1). The function f is continuous on R if

and only if f is continuous in zero;

f) Let f; f(0) 6= 0 be a solution of (1). If f is bounded on a neighbourhood

(�"; ") of zero, then f is continuos on R.

1. Lemma 1. If f : R! R; f(0) 6= 0 is solution of (1); then f is solution

of functional equation

(8) f(x)mf(y)n = f

�
mx + ny

m + n

�m+n

; (m;n 2N�):

Proof. From (4) we successively obtain

f(2x)f(0) = f(x)2; f(3x)f(x)f(�x) = f(x)3;

hence f(3x)f(0)2 = f(x)3: We assume

(9) f(mx)f(0)m�1 = f(x)m (m > 3; m 2N):

We have (see (6), (7), (9))

f
�
(m + 1)x

�
f(0)m = g(mx + x)f(0)m+1 = g(mx)g(x)f(0)m+1

=
f(mx)

f(0)

f(x)

f(0)
f(0)m+1 = f(mx)f(x)f(0)m�1

=
f(x)m

f(0)m�1
f(x)f(0)m�1 = f(x)m+1;

hence

f
�
(m + 1)x

�
f(0)m = f(x)m+1:

Taking in account (6), (7), (9), the left-hand side of (8) becomes

f(x)mf(y)n = f(mx)f(ny)f (0)m+n�2 =
f(mx)

f(0)

f(nx)

f(0)
f(0)m+n

= g(mx)g(ny)f(0)m+n = g(mx+ ny)f(0)m+n

= f(mx + ny)f(0)m+n�1
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and the right-hand side of (8) becomes:

f

�
mx+ ny

m + n

�m+n

= f

�
(m + n)

mx + ny

m + n

�
f(0)m+n�1 = f(mx + ny)f(0)m+n�1 ;

which implies (8).

2. Lemma 2. If f : R ! R; f(0) 6= 0 is the solution of (1); then f is

solution of functional equation

(10) f(x)kf(y)` = f

�
kx+ `y

k + `

�k+`

; (k; ` 2 Z; k + 1 6= 0):

Proof. From (5) and (9) results

f(�mx) =
f(0)2

f(mx)
= f(x)�mf(0)m+1 ;

hence

f(kx)f(0)k�1 = f(x)k (k 2 Z):

We have

f(x)kf(y)` = f(kx)f(`y)f (0)k+`�2 = f(kx+ `y)f(0)k+`�1

and

f

�
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�
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�
f(0)k+`�1 = f(kx+ `y)f(0)k+`�1;

which proves that (10) is true.

3. Lema 3. If f : R ! R; f(0) > 0 is a solution of (1); then f is also a

solution of functional equation

(11) f(x)rf(y)s = f

�
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(r; s 2 Q; r + s 6= 0):

Proof. We have (see b. (9))
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If r = m=n; s = m1=n1 (n; n1 2N�; m;m1 2 Z); we obtain

f(x)rf(y)s = f(x)m=nf(y)m1=n1 = f
�m
n
x
�
f
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�
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f(0)r+s�1:

4. Lemma 4. If f : R! R; f(0) > 0 and f is bounded on a neighbourhood

(�"; ") of zero, is a solution of (1); then f is a solution of functional equation (2):

Proof. Let (rn)n2N; (sn)n2N two sequences,

rn; sn 2 Q; rn + sn 6= 0; lim
n!+1

rn = p; lim
n!+1

sn = q; p+ q 6= 0 (p; q 2 R nQ):

We have

(12) f(x)rnf(y)sn = f

�
rnx+ sny

rn + sn

�rn+sn

:

Taking into account b), e) and f) and passing to lim
n!+1

in (12) we obtain

functional equation (2).

Proposition 1. Let f : R ! R; f(0) > 0 is bounded on a neighbourhood (�"; ")
of zero, then Lobachevsky's functional equation (1) is equivalent with equation (2):

Proof. Every solution of (1) (which verify the assumptions) is solution of (2)

(Lemma 4). Reciprocally, every solution of (2) for p = q = 1 is also solution for

(1).

Proposition 2. In the same assumptions as in Proposition 1 the solution of (1)

is a convex function, i.e.

�f(x) + �f(y) � f(�x+ �y) (�; � > 0; �+ � = 1):

The proof results from inequality [2]

a�b� � �a+ �b (a; b; �; � > 0; �+ � = 1)

anf from (2)

5. Lemma 5. If f : R ! R; f(0) > 0; f is bounded on small neighbour-

hood (�"; ") of zero is solution of (1); then f is solution of (3):
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The proof results by mathematical induction. For n = 2; functional equation

(3) becomes (2) and by Lemma 4 is true. We suppose that (3) is veri�ed for n > 2

and results that (3) is true for n + 1:

Proposition 3. Under the same assumptions as in Lemma 5; Lobachevski's func-

tional equation (1) is equivalent with (3).

The proof is similar with the proof of Proposition 1.

Proposition 4. Under the same assumptions as in Lemma 5; we have

nP
i=1

�if(xi) � f
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�i = 1:

The proof results from equality [2]
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�

and from functional equation (3).
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