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A METHOD OF CONSTRUCTING

INEQUALITIES ABOUT e
x

QI Feng

Dedicated to the loving memory of my mother

We prove some inequalilies for exponential function x 7! e
x and a combinato-

rial inequality, and present a method of constructing inequalities.

1. INTRODUCTION

From the Taylor's expansion

(1) ex =
1P
k=0

xk=k! (x 2 R)

it follows that, if n is an odd number,

(2) ex � 1 +
nP

k=1

xk=k! (x 2 R):

When n is an even number, (2) also holds for x � 0, however, (2) is reversed for

x � 0. From this one could verify that the equation
2nP
k=0

xk=k! = 0 has no real root

[1, 4, 5, 6].

Introducing the notation Sn(x) =
nP

k=0

xk=k! (n � 0), we have

(3) ex � Sn(x) �
xex

n
(x � 0):
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Let b be a given positive number. Then

(4)
xn+1

(n + 1)!
� ex � Sn(x) �

xn+1eb

(n + 1)!
(x 2 [0; b]):

For x 2 [0; n+1), the right side of (4) could be improved to [4, pp.358, 5 and

6, pp. 269]

(5) ex � Sn(x) �
xn+1

(n � x+ 1)n!
:

Other inequalities about exponential function ex may be found in [1, 2, 4, 5, 6].

In this article we prove some new inequalities for the exponential function and

a combinatorial inequality. These results generalize and improve related inequalities

in references by constructing the ancillary function, for example

(6) ex � Sn(x) + �nx
n+1 (x 2 [0; b]);

where �n = (�n�1 � 1=n!)=b; �
�1 = eb; n � 0, which can not be replaced by

smaller constants. So the inequality (6) is sharp.

Inequality (5) could be obtained by integrating (6) on both sides over [0; b],

hence (6) is better than (5) in this sense.

It is also noted that the method of the article could yield more general results

and be applied to other questions, cf. [3, 7{9].

2. LEMMAS

Lemma 1.

(7) ex � Sn(x) �
n+ 2� (n+ 1)x

(n + 2)!
xn+1ex (x 2 [0;+1)):

Proof. Suppose h(x) = (n+1)xn+2ex�(n+2)xn+1ex+(n+2)!(ex�Sn(x)); x � 0.

From (1) we obtain

h(x) = (n+ 1)

1X
k=0

xn+k+2

k!
� (n+ 2)

1X
k=0

xn+k+1

k!
+ (n+ 2)!

1X
k=n+1

xk

k!

= (n+ 1)

1X
k=0

xn+k+2

k!
� (n+ 2)

1X
k=0

xn+k+2

(k + 1)!
+ (n+ 2)!

1X
k=0

xn+k+2

(n + k + 2)!

=

1X
k=1

�
k(n+ 1)� 1

(k + 1)!
+

(n+ 2)!

(n+ k + 2)!

�
xn+k+2

� 0 (x 2 [0;+1)): QED.

Lemma 2. ex � Sn(x) �
n + 1 + ex

(n+ 2)!
xn+1 �

ex

(n+ 1)!
xn+1 (x � 0):
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Proof. Set '(x) = (n+ 2)!
�
ex � Sn(x)

�
� (n + 1)xn+1 � xn+1ex, then

'(k)(x) = (n+ 2)!
�
ex � Sn�k(x)

�
�

(n+ 1)(n+ 1)!

(n � k + 1)!
xn�k+1

�

kX
i=0

(n+ 1)!

(n � i + 1)!
Ci

k
xn�i+1ex;

'(n+2)(x) =

�
(n+ 2)!�

n+1X
i=0

(n+ 1)!

(n � i + 1)!
Ci

n+2 x
n�i+1

�
ex (x � 0);

where 1 � k � n + 1; '(k)(0) = 0. Since '(n+2)(x) is a decreasing function and

'(n+2)(0) = 0, thus '(n+2)(x) � 0; '(k)(x) � 0, and '(x) � 0; x � 0. QED.

Lemma 3. For x 2 [0;+1); 0� k � n, we have

(9)
�
ex � Sn�k(x)

�
xk +

k

(n � k + 2)!
xn+1

�
(n+ 2)!

(n� k + 2)!

�
ex � Sn(x)

�
:

Proof. De�ne a function G : [0;+1)! (�1;+1), by

G(x) = xkex � xkSn�k(x) +
k

(n� k + 2)!
xn+1

�
(n + 2)!

(n � k + 2)!

�
ex � Sn(x)

�
:

For 0 � j � k; 1 � m � n� k, computing directly yields

G(j)(x) =

� jX
i=0

k!

(k � i)!
Ci

j
xk�i

�
ex �

n�kX
i=0

(i+ k)!

i!(i+ k � j)!
xi+k�j

+
k(n+ 1)!

(n � k + 2)!(n� j + 1)!
xn�j+1

�
(n+ 2)!

(n� k + 2)!

�
ex � Sn�j(x)

�
;

G(k+m)(x) =

kX
i=0

k!

(k � i)!
Ci

k+mx
k�iex �

n�kX
i=m

(i + k)!

i!(i �m)!
xi�m

+
k(n+ 1)!

(n � k + 2)!(n� k �m+ 1)!
xn�k�m+1

�
(n+ 2)!

(n � k + 2)!

�
ex � Sn�k�m(x)

�
;

G(n+1)(x) =

kX
i=0

k!

(k � i)!
Ci

n+1x
k�iex +

k(n+ 1)!

(n� k + 2)!
�

(n + 2)!

(n � k + 2)!
ex;

G(n+2)(x) =

� kX
i=0

k!

(k � i)!
Ci

n+1x
k�i +

k�1X
i=0

k!

(k � i� 1)!
Ci

n+1x
k�i�1

�
(n+ 2)!

(n � k + 2)!

�
ex:
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Since G(n+2)(0) = 0; G(n+2)(x) increases, hence G(n+2)(x) � 0; G(n+1)(x) is in-

creasing, G(n+1)(0) = 0; G(k+m)(0) = 0; G(j)(0) = 0, and that G(x) � 0. QED

Lemma 4. Let p; k and n be all positive integers such that 1 � p � k � n. Then

(10) Ck�1
n+1 �C

p

n+1 � (n+ 1)C
k�p

n+1:

Proof. We will use mathematical induction to prove the combinatorial inequality

(10).

For n � 2, the inequality (10) apparently holds.

Suppose (10) is valid for n = m.

Let n = m + 1. For 1 � p � k � m, calculating easily results in

Ck�1
m+2 �C

p

m+2 =
(m + 2)2

(m � p+ 2)(m � k + 3)
Ck�1
m+1 �C

p

m+1

�
(m + 2)2(m + 1)

(m � p+ 2)(m � k + 3)
C
k�p

m+1

=
(m + 2)(m + 1)(m� k + p + 2)

(m � k + 3)(m � p+ 2)
C
k�p

m+2 � (m + 2)C
k�p

m+2:

For 1 � p � m; k = m + 1, one sees that

Cm

m+2 �C
p

m+2 �
(m + 2)2(m + 1)

2(m� p+ 2)
Cp

m+1 =
(p+ 1)(m+ 1)(m + 2)

2(m � p+ 2)
Cp+1
m+2

� (m + 2)C
p+1
m+2 = (m + 2)C

m�p+1
m+2 :

For p = k = m + 1 we get

Cm

m+2 �C
m+1
m+2 = (m + 2)C2

m+2 � (m+ 2)2 > m + 2 = (m + 2)C0
m+2:

Hence, for n = m+ 1, inequality (10) is sound. QED

Lemma 5. For n � k � 1 and for x 2 [0;+1), we have

(11)
�
e
x
� Sn�k(x)

�
x
k
�

kx
n+1

e
x

(n+ 1)(n� k+ 2)!
�

n!� (n� k + 2)(n+ 1)!

(n� k + 2)!

�
e
x
� Sn(x)

�
:

Proof. De�ne a function R : [0;+1)! (�1;+1), such that

R(x) = xkex � xkSn�k(x)

+
n!� (n� k + 2)(n+ 1)!

(n � k + 2)!

�
ex � Sn(x)

�
�

kxn+1ex

(n+ 1)(n� k + 2)!
:

Calculating straightforwardly gives

R(j)(x) =

jX
i=0

k!

(k � i)!
Ci

j
xk�iex �

n�kX
i=0

(i + k)!

i!(i+ k � j)!
xi+k�j
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+
n!� (n� k + 2)(n + 1)!

(n� k + 2)!

�
ex � Sn�j(x)

�

�
kex

(n+ 1)(n� k + 2)!

jX
i=0

(n+ 1)!

(n� i+ 1)!
Ci

j
xn�i+1;

R(k+m)(x) =

kX
i=0

k!

(k � i)!
Ci

k+mx
k�iex �

n�kX
i=m

(i + k)!

i!(i�m)!
xi�m

+
n!� (n� k + 2)(n + 1)!

(n� k + 2)!

�
ex � Sn�k�m(x)

�

�
kex

(n+ 1)(n� k + 2)!

k+mX
i=0

(n+ 1)!

(n � i + 1)!
Ci

k+mx
n�i+1;

R(n+1)(x) =
n!� (n� k + 2)(n + 1)!

(n� k + 2)!
ex +

� kX
i=0

k!

(k � i)!
Ci

n+1 x
k�i

�
k

(n+ 1)(n� k + 2)!

n+1X
i=0

(n+ 1)!

(n� i + 1)!
Ci

n+1 x
n�i+1

�
ex;

where 1 � j � k; 1 � m � n� k, and R(j)(0) = 0; R(k+m)(0) = 0; R(n+1)(0) � 0.

Let

�(x) =

kX
i=0

k!

(k � i)!
Ci

n+1x
k�i

�
k

(n + 1)(n� k + 2)!

n+1X
i=0

(n+ 1)!

(n � i + 1)!
Ci

n+1x
n�i+1;

then, for 1 � p � k, using (10), by direct computation, one has

�(p)(x) =

k�pX
i=0

k!

(k � i � p)!
Ci

n+1x
k�i�p

�
k

(n+ 1)(n� k + 2)!

n�p+1X
i=0

(n + 1)!

(n� i� p+ 1)!
Ci

n+1x
n�i�p+1;

�(p)(0) =

 
1�

Ck�1
n+1 �C

p

n+1

(n + 1)C
k�p

n+1

!
k!C

k�p

n+1 � 0:

Since �(k)(x) decreases, then �(p)(x) � 0, thus �(x) decreases, too. From

R(n+1)(0) � 0 we deduce that R(n+1)(x) � 0; R(n)(x) is decreasing, hence

R(k+m)(x) � 0; R(j)(x) � 0; R(x) is decreasing, R(x) � 0 owing to R(0) = 0.

QED

3. MAIN RESULT

Theorem 1. Let b be a positive real number. For x 2 [0; b] we have

(12) ex � Sn(x) + �nx
n+1;
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(13) ex � Sn(x) + �nx
n+1 +

(n + 1)!�n � eb

b(n+ 1)(n+ 1)!
(b� x)xn+1

where Sn(x) =
nP

k=0

xk=k!; �
�1 = eb; �n = (�n�1 �

1
n!
)=b; n � 0, and the coe�-

cients �n and
(n+1)!�n�e

b

(n+1)!(n+1)b
are sharp in the sense that they could not be replaced

by smaller and larger constants in (12) and (13); respectively.

Proof. Let F (x) = ex � Sn(x)��nx
n+1 + 
(b� x)xn+1; x 2 [0; b], where 
 � 0 is

an undetermined coe�cient. By a straightforward computation, it follows that

�n = [eb � Sn(b)]=b
n+1; F (0) = F (b) = 0;

F (k)(x) = ex � Sn�k(x) �
(n+ 1)!

(n� k + 1)!
�nx

n�k+1 + 


�
(n + 1)!

(n� k + 1)!
b

�
(n+ 2)!

(n� k + 2)!
x

�
xn�k+2; F (k)(0) = 0; 0 � k � n;

F (k)(b) = eb � Sn�k(b)�
(n+ 1)!

(n� k + 1)!
�nb

n�k+1
�

k(n+ 1)!

(n � k + 2)!

 bn�k+2;

F (n+1)(x) = ex + 

�
(n+ 1)!b� (n+ 2)!x

�
� (n + 1)!�n;

F (n+1)(0) = 1� (n + 1)!�n + b
(n+ 1)!;

F (n+1)(b) = eb � (n+ 1)!�n� b
(n + 1)(n+ 1)!;

F (n+2)(x) = ex � 
(n + 2)!; F (n+2)(0) = 1� 
(n + 2)!;

F (n+2)(b) = eb � 
(n + 2)!

Clearly, F (n+2)(x) is monotonically increasing.

3.1. If 1
(n+2)!

< 
 < e
b

(n+2)!
, then F (n+2)(0) < 0; F (n+2)(b) > 0, therefore F (n+2)(x)

has an only one zero, which is a minimum of F (n+1)(x) on (0; b).

3.1.1 If 
 �
(n+1)!�n�1

(n+1)!b
and 
 <

e
b
�(n+1)!�n

(n+1)(n+1)!b
, then F (n+1)(0) � 0; F (n+1)(b) > 0,

thus F (n+1)(x) has a unique zero on (0; b), therefore F (n)(x) has a unique minimum

on (0; b). If 1
(n+2)!

< 
 �
�
(n+ 1)!�n � 1

�
=(n+ 1)!b, from (7) and (8), F (n)(x) has

a unique minimum on (0; b). From (9) it follows that F (k)(b) > 0; F (k)(x) has only

one minimum. Hence F (x) � 0; x 2 [0; b]. The proof of (12) is completed.

3.1.2 If eb=(n + 2)! > 
 �
�
eb � (n + 1)!�n

�
=(n + 1)(n + 1)!b, then F (n+1)(0) >

0; F (n+1)(b) � 0, wherefore F (n+1)(x) has an only zero on (0; b); F (n)(x) has a

unique maximum on (0; b). From (11) we have F (k)(b) < 0 and F (k)(x) has only

one maximum on (0; b). Hence F (x) � 0; x 2 [0; b]. The proof of (13) is completed.

3.2. If 
 � 1=(n+ 2)!, then F (n+2)(x) � 0; F (n+1)(x) increases. Also F (n+1)(0) <

0; F (n+1)(b) > 0. Going through the same process as (3.1.1) again, then (12) is

sound.

3.3. If 
 � eb=(n + 2)!, it is seen easily that F (n+2)(x) � 0; F (n+1)(x) decreases.

Then F (n+1)(0) > 0; F (n+1)(b) < 0. Also going through the same process as (3.1.2)

again, (13) is valid.
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Indeed, the coe�cients �n and
�
(n+1)!�n�e

b
�
=
�
(n+1)!b(n+1)

�
of inequali-

ties (12) and (13) cannot be replaced by smaller and larger constants, respectively.

In this sense the inequalities (12) and (13) are sharp. QED

Remark 1. A similar argument yields

Theorem 2. For a given constant b > 0; we have

(14) ex � 1 + �0x+ (b� x)

nX
k=1

�kx
k (x 2 [0; b])

(15) ex � 1 + �0x+ (b� x)

nX
k=1

�kx
k +

eb + (n+ 1)�n

(n+ 1)!(n+ 1)b
(b� x)xn+1;

where �1 = �1; �k+1 =
�
�k + 1=(k + 1)!

�
=b.

4. AN APPLICATION OF THE INEQUALITY (12)

Integrating on both sides of (12) over [0; b] establishes

bR
0

ex dx �
bR
0

Sn(x) dx+
bR
0

�nx
n+1 dx;

(16) eb � Sn+1(b) + bn+2�n=(n+ 2):

Using �n =
�
eb � Sn(b)

�
=bn+1 and rearranging (16) results in

eb � Sn+1(b) � bn+2=(n� b+ 2)(n+ 1)!; b < n+ 2

that is

ex � Sn+1(x) � xn+2=(n� x+ 2)(n+ 1)! (x 2 [0; n+ 2)):

Hence we get inequality (5) by integrating (12). In this sense the inequality (12) is

better than (5).

Remark 2. Analogously, the inequality (13) produces

ex � Sn(x) �
(n+ 1)(n+ 2)(n + 3)� xex

(n+ 1)(n+ 3) � (n+ 2)x
�

xn+1

(n+ 2)!
; x 2

�
0;
(n + 1)(n+ 3)

n+ 2

�
:

Remark 3. Recurring �k directly reduces to

(17) �k =
�
eb + Sk(b) � 2(1 + b)

�
=bk+1; b > 0:

Then, in the same way as remark 2, inequalities (14) and (15) imply

(18)
ex � 1

x
�

1

2
(1 + ex) +

nX
k=1

ex + Sk(x)� 2(1 + x)

(k + 1)(k + 2)
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and

(19)
ex � 1

x
�

1

2
(1 + ex) +

nX
k=1

ex + Sk(x) � 2(1 + x)

(k + 1)(k + 2)

+
xn+1ex + (n+ 1)

�
ex + Sn(x)� 2(1 + x)

�
(n + 3)!(n+ 1)(n + 2)

for all x 2 (0;+1).

Remark 4. In fact, inequality (6) is also a simple consequence of the monotonicity

for
�
ex �Sn(x)

�
=xn+1; x 2 (0;+1). This provides another proof of inequality (5).
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