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1. INTRODUCTION

Let E : [0;+1) ! R be a nonnegative, non-increasing, locally absolutely

continuous function. Assume that there exists another locally absolutely continuous

function � : [0;+1)! R and there are three real numbers a, b and � such that

(1) j�j � aE in [0;+1)

and

(2) �0 � �bE0 �E�+1 a.e. in [0;+1):

How can we estimate E(t) ?

Problems of this type often appear during the study of dissipative linear

evolutionary problems where E denotes the energy of the solution. It is su�cient

to consider the case where E(0) = 1. Indeed, if E(0) = 0, then E � 0. On the other

hand, if E(0) > 0, then replacing E, �, a and b respectively by E=E(0), �E(0)���1,

aE(0)�� and aE(0)��, we obtain a solution of (1), (2) satisfying E(0) = 1. We

will therefore assume in the sequel that

(3) E(0) = 1:

Let us briey recall the Liapunov method as usually applied to this problem

(see e.g. [1], [4], [5], [10], [11]). Fix a real number d satisfying

(4) d > a and d � b;
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and consider the function F := dE+�. One can readily verify that F : [0;+1)! R

is nonnegative, non-increasing, locally absolutely continuous. Furthermore,

0 � (d� a)E � F � (d+ a)E in [0;+1)

and

F 0 � �(d+ a)���1F�+1 a.e. in [0;+1):

Dividing by F�+1 and integrating it follows that

F (t) �

�
F (0)e�t=(d+a) if � = 0;

(F (0)�� + �(d+ a)���1t)�1=� if � 6= 0

and therefore

E(t) �

8<
:

d+a
d�a

e�t=(d+a) if � = 0;

d+a
d�a

�
d+a+�t
d+a

�
�1=�

if � 6= 0

for all t � 0 such that E(t) > 0.

Next we minimize the right-hand side of this estimate with respect to d

satisfying (4). Since (as we shall see at the end of this paper) this method does not

lead to sharp estimates, we only consider henceforth the special case where

� = 0 and a > 0:

Then we have

(5) E(t) �
d+ a

d� a
e�t=(d+a) =: f(d)

for all t � 0 and for all d satisfying (4). (Observe that this inequality makes sense

and remains valid without the assumption E(t) > 0.)

An easy computation shows that

f 0(d) = e�t=(d+a)
(t� 2a)d� (t+ 2a)a

(d� a)2(d+ a)

Hence f is decreasing (resp. increasing) if (t� 2a)d� (t + 2a)a < 0 (resp. > 0).

If 0 � t � 2a, then f is decreasing in (a;+1) and tends to 1 as t ! +1.

Therefore we only obtain the trivial estimate E(t) � 1.

If t > 2a, then f decreases in (a;A) and increases in (A;+1) where

A =
t+ 2a

t� 2a
a (> a):

We distinguish two cases:

If b � A, then choosing d = A in (5) we obtain that

E(t) �
t

2a
e�(t�2a)=(2a):
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If b � A, then choosing d = b in (5) we conclude that

E(t) �
b+ a

b� a
e�t=(b+a):

If b � a, then b � A for all t > 2a. If b > a, then b � A if and only if

2a < t � 2a b+a
b�a

.

We have thus proven the following:

Proposition 1. If E, � solve (1) � (3) with � = 0 and a > 0, then we have the

following estimates :

(6) E(t) �

8>><
>>:
1 if 0 � t � 2a;
t
2a
e(2a�t)=(2a) if b � a and t � 2a;

t
2a
e(2a�t)=(2a) if b > a and 2a � t � 2a b+a

b�a
;

b+a
b�a

e�t=(b+a) if b > a and t � 2a b+a
b�a

.

Despite the very frequent application of this method, the above estimates are

not optimal. Applying a di�erent method we shall prove

Theorem 2. a) The problem (1) � (3) has no solution unless � > �1, a � 0 and

a+ b > 0.

b) If E, � solve (1){(3) with some � > 0, then we have the following esti-

mates :

b1) If �a < b � a, then

(7) E(t) �

(
1 if 0 � t � (a+ b);�

a+b+�t
(a+b)(1+�)

�
�1=�

if t � (a + b),

and in the second case the inequality is strict ;

b2) If b > a, then

(8) E(t) �

(
1 if 0 � t � 2a;�

a+b+�t
a+b+2�a

�
�1=�

if t � 2a.

c) If E, � solve (1) � (3) with � = 0, then we have the following estimates :

c1) If �a < b � a, then

(9) E(t) �

�
1 if 0 � t � a+ b;

e(a+b�t)=(a+b) if t � a+ b,

and in the second case the inequality is strict ;

c2) If b > a, then

(10) E(t) �

�
1 if 0 � t � 2a;

e(2a�t)=(a+b) if t � 2a.
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d) If E, � solve (1) � (3) with some �1 < � < 0, then we have the following

estimates :

d1) If �a < b � a; then

(11) E(t) �

8><
>:
1 if 0 � t � (a+ b);�

a+b+�t
(a+b)(1+�)

�
�1=�

if (a+ b) � t < (a+ b)=j�j;

0 if t � (a+ b)=j�j,

and in the second case the inequality is strict ;

d2) If b > a, then

(12) E(t) �

8><
>:
1 if 0 � t � 2a;�

a+b+�t
a+b+2�a

�
�1=�

if 2a � t � (a+ b)=j�j;

0 if t � (a+ b)=j�j.

The above estimates are optimal.

Remark. Letting � ! 0 in the formulae corresponding to � 6= 0 we �nd the

formulae for � = 0.

For the proof of Theorem 2, we will have to study a closely related integral

inequality, already used in [2], [3], [6]{[9]:

(13)

Z +1

t

E(s)�+1 ds � TE(t); t � 0:

Here we only assume that E : [0;+1) ! R is a nonnegative, non-increasing

(hence measurable) function and that �, T are given real numbers. If E(0) = 0,

then E � 0. If E(0) > 0, then replacing E by E=E(0) and T by TE(0)�� we

obtain a solution of (13) such that E(0) = 1.

Furthermore, in order to avoid the trivial solution

E(t) =

�
1 if t = 0;

0 if t > 0,

we shall only consider consider solutions of (13) such that

(14) E(0) = 1 and E 6� 0 in (0;1):

The following result, interesting in itself, completes some earlier theorems of

Haraux [2], [3]:

Theorem 3. a) The problem (13)� (14) has no solution unless � > �1 and T > 0.

b) If E solves (13) � (14) with some � > 0, then we have the following

estimates :

(15) E(t) �

(
1 if 0 � t � T ;�

T+�t
T+�T

�
�1=�

if t � T .
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Moreover, the second inequality is strict if E is right continuous.

d) If E solves (13)� (14) with � = 0, then we have the following estimates :

(16) E(t) �

�
1 if 0 � t � T ;

e(T�t)=T if t � T .

Moreover, the second inequality is strict if E is right continuous.

e) If E solves (13)� (14) with some �1 < � < 0, then we have the following

estimates :

(17) E(t) �

8><
>:
1 if 0 � t � T ;�
T+�t
T+�T

�
�1=�

if T � t < T=j�j;

0 if t � T=j�j.

Moreover, the second inequality is strict if E is right continuous.

These estimates are optimal.

Remark. As in the preceding results, letting �! 0 in the formulae corresponding

to � 6= 0we �nd the formulae for � = 0.

2. PROOF Of THEOREM 3

If � � �1, then (13) is meaningful only if E(t) > 0 for all t > 0. However,

then E(s)�+1 � E(0)�+1 = 1 for all s � 0 and therefore the integral on the

left-hand side of (14) is in�nite.

If T � 0, then (13) implies at once that E vanishes in (0;+1), contradicting

(14).

Thus part a) of the theorem is proven. Henceforth we may therefore assume

that � > �1 and T > 0.

If 0 � t � T , then the estimates E(t) � 1 of (15){(17) follow simply from the

non-increasingness of E. Also, there is nothing to prove if t � B where

B = supfr � 0 j E(r) > 0g:

We may thus assume that T < t < B.

The formula

F (r) =

Z +1

r

E(s)�+1 ds

de�nes a nonnegative, non-increasing and locally absolutely continuous function

F : [0;1)! R. It follows from (13) that

�F 0 � T���1F�+1
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almost everywhere in (0;1). Dividing by F�+1 and integrating in (0; s), we obtain

for every 0 < s < B the following inequalities:

F (s) �

�
(F (0)�� + �T���1s)�1=� if � 6= 0;

F (0)e�s=T if � = 0.

Since F (0) � T by (13) � (14); these inequalities remain valid if we replace

F (0) by T . Furthermore, we have

F (s) �

Z T+(�+1)s

s

E(r)�+1 dr � (T + �s)E(T + (�+ 1)s)�+1:

Therefore, we deduce from the preceding inequalities the estimates

(T + �s)E(T + (�+ 1)s)�+1 �

�
(T�� + �T���1s)�1=� if � 6= 0;

Te�s=T if � = 0,

or equivalently,

E(T + (�+ 1)s) �

( �
T+�s
T

�
�1=�

if � 6= 0;

e�s=T if � = 0,

for all 0 < s < B.

If � � 0, then these estimates obviously remain valid for all s > 0. Choosing

s = t�T
�+1

hence (15)� (16) follow.

If �1 < � < 0, then the right-hand side of the above estimate is meaningless

for s � T=j�j. Hence E(t) = 0 for all t � T=j�j, proving the third inequality in

(17). Furthermore, the above estimate obviously remains valid for all 0 < s < T=j�j.

Since T < t < B implies that 0 < t�T
�+1

< T=j�j, we may choose s = t�T
�+1

in the

above estimate, and the second inequality of (17) follows.

Now assume that E is right continuous and prove that the second inequalities

of (15)�(17) are strict. Assume on the contrary that we have equality in the second

inequality of one of the formulae (15)� (17) for some t0 � T :

(18) E(t0) =

(�
T+�t0

T+�T

�
�1=�

if � 6= 0;

e(T�t
0
)=T if � = 0.

Using the right continuity of E in t0, there is a constant 0 < � < 1 such that

Z t0

0

E�+1 ds � �

Z +1

0

E�+1 ds:

It follows that the function

G(t) =
n
E(t) if 0 � t � t0;

0 if t > t0
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also satis�es (13)� (14); even if we replace the constant T in (13) by �T . Applying

the already proved (weak) estimates (15)� (17); we have

G(t0) �

(�
�T+�t0

�T+��T

�
�1=�

if � 6= 0;

e(�T�t
0
)=(�T ) if � = 0.

(Note that the third case in (17) cannot occur because G(t0) > 0 by assumption.)

Using (18) and the equality G(t0) = E(t0) > 0, it follows that(�
T+�t0

T+�T

�
�1=�

�

�
�T+�t0

�T+��T

�
�1=�

if � 6= 0;

e(T�t
0
)=T � e(�T�t

0
)=(�T ) if � = 0.

But both inequalities contradict the property � < 1.

Let us now turn to the proof of the optimality of the estimates (15) � (17):

Fix � > �1, T > 0 and t0 � 0 arbitrarily. If 0 � t0 < T , then we have to construct

a solution of (13)� (14) such that E(0) = E(t0) = 1. Choose simply

E(t) =
n
1 if 0 � t � T ;

0 if t > T .

The veri�cation of (13) is immediate: the case t > T is trivial, while for 0 � t � T

we have Z
+1

t

E(s)�+1 ds �

Z T

t

1 ds � T = TE(t):

We may even construct continuous examples, e.g.,

E(t) =

(
1 if 0 � t � t0;

(T � t)=(T � t0) if t0 � t � T ;

0 if t > T .

If t0 � T (for � � 0) or T � t0 < T=j�j (for �1 < � < 0), then we have to

construct a solution of (13)� (14) such that

E(t0) =

(�
T+�t0

T+�T

�
�1=�

if � 6= 0;

e(T�t
0
)=T if � = 0.

If � = 0, then let us choose

E(t) =

(
e�t=T if 0 � t � t0 � T ;

e�(t
0
�T )=T if t0 � T � t � t0;

0 if t > t0.

If � 6= 0, then let us choose

E(t) =

8><
>:
�
T+�t
T

�
�1=�

if 0 � t � t0�T
�+1

;�
T+�t0

T+�T

�
�1=�

if t0�T
�+1

� t � t0;

0 if t > t0.
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(Note that these functions are not continuous.)

The only nontrivial property to verify is (13) for 0 � t � t0�T
�+1

. Since E�+1 =

�TE0 in (0; t
0
�T

�+1
) in all cases, we have in fact equality:

Z
+1

t

E(s)�+1 ds =

Z
(t0�T )=(�+1)

t

E(s)�+1 ds +

Z t0

(t0�T )=(�+1)

E(s)�+1 ds

= TE(t)� TE

�
t0 � T

�+ 1

�
+

�
t0 �

t0 � T

�+ 1

�
E

�
t0 � T

�+ 1

��+1
= TE(t):

The proof of Theorem 3 is completed.

3. PROOF OF THEOREM 2

We begin with a lemmarelating the problem (1)�(3) to the integral inequality

(13)� (14):

Lemma 4. If E, � solve (1) � (3) with some a, b and �, then E also solves

(13)� (14) with the same � and with T = a+ b.

Proof. Since the solutions E of (1)� (3) are continuous, (3) implies (14).

It follows from (1)� (2) and from the non-increasingness of E that

(19)

Z t0

t

E(s)�+1 ds � [bE + �]tt0 � 2(jaj+ jbj)E(t)

for all 0 � t < t0 < +1. Letting t0 ! +1 hence we conclude thatZ +1

t

E(s)�+1 ds � 2(jaj+ jbj)E(t)

for all t � 0. Applying Theorem 3 it follows that E(t0) ! 0 as t0 ! 1. Using

(1) we also obtain that �(t0) ! 0 as t0 ! +1. Hence, letting t0 ! 1 in the �rst

inequality of (19), we conclude that

Z
+1

t

E(s)�+1 ds � bE(t) + �(t):

Applying (1) again, hence (13) follows.2

It follows at once from (1) and (3) that a � 0. The rest of part a and parts

b1, c1, d1 Theorem 2 follow at once from Lemma 4 and Theorem 3, including the

strict inequalities.

It remains to prove the estimates (8), (10) and (12). Since the inequality

E(t) � 1 is obvious, we have to prove for � > �1, b > a � 0 and t > 2a the
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following estimates:

(20) E(t) �

8>>>>><
>>>>>:

�
a+b+�t
a+b+2�a

�
�1=�

if � > 0;

e(2a�t)=(a+b) if � = 0;�
a+b+�t
a+b+2�a

�
�1=�

if � < 0 and t � (a+ b)=j�j;

0 if � < 0 and t > (a+ b)=j�j:

Clearly, we may also assume that

t < B := supfr � 0 j E(r) > 0g:

Dividing the inequality (2) by E�+1, then integrating in (0; t) and using (1),

we obtain thatZ t

0

bE���1E0 ds �

Z t

0

�1� �0E���1 ds

= [��E���1]t
0 +

Z t

0

�1 � (�+ 1)�E���2E0 ds

� aE(t)�� + aE(0)�� � t� (�+ 1)a

Z t

0

E���1E0 ds;

whence

(b+ a+ �a)

Z t

0

E���1E0 ds � aE(t)�� + aE(0)�� � t:

Computing the integral, it follows easily that

E(t) �

8>>><
>>>:

�
a+b+�t
a+b+2�a

�
�1=�

if � > 0;

e(2a�t)=(a+b) if � = 0;�
a+b+�t
a+b+2�a

�
�1=�

if � < 0.

Comparing with (20), it only remains to show that E(t) = 0 if � < 0 and t >

(a+ b)=j�j. Let us observe that for � < 0 the right-hand side of the last inequality

vanishes for t = (a+b)=j�j. It cannot occur if E(t) > 0, therefore E((a+b)=j�j) = 0

and our claim follows.

Now we are going to prove the optimality of our estimates (7) � (12): Fix

� > �1, a � 0, b > �a arbitrarily. Furthermore, �x t0 � 0 arbitrarily if � � 0 and

�x 0 � t0 < (a+ b)=j�j arbitrarily if �1 < � < 0.

Let us de�ne a number R in the following way: set

R =

8<
:
0 if b � a and t0 < a+ b;

0 if b > a and t0 < 2a;
(a+b)(t0�2a)

a+b+2�a
if b > a and t0 � 2a.
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Furthermore, choose an arbitrary number

(21)
t0 � a� b

1 + �
< R � t0

if b � a and t0 � a+ b; its value will be precised later.

These de�nitions are correct and 0 � R � t0 in all cases.

Next we de�ne the function E. For � > 0 we set

E(t) =

8>>><
>>>:

�
a+b+�t
a+b

�
�1=�

if 0 � t � R;

E(R) if R < t � t0;

E(R)
�
1 +

�(t�t0)E(R)�

a+b�(t0�R)E(R)�

�
�1=�

if t > t0.

For � = 0 we de�ne

E(t) =

8<
:
e�t=(a+b) if 0 � t � R;

E(R) if R < t � t0;

E(R)e(t
0
�t)=(a+b+R�t0) if t > t0.

Finally, for �1 < � < 0 we set

E(t) =

8>>>><
>>>>:

�
a+b+�t
a+b

�
�1=�

if 0 � t � R;

E(R) if R < t � t0;

E(R)
�
1 +

�(t�t0)E(R)�

a+b�(t0�R)E(R)�

�
�1=�

if t0 < t < t00;

0 if t � t00,

where

t00 = t0 +
a+ b� (t0 � R)E(R)�

j�jE(R)�
:

If 0 � t � t0, then a+ b+ �t > 0; hence E(t) is correctly de�ned and strictly

positive. In particular, E(R) > 0. Let us show that

(22) (t0 � R)E(R)� < a+ b

and

(23) (t0 � R)E(R)� � 2a:

Indeed, if b � a and t0 < a+ b, then

(t0 � R)E(R)� = t0 < a+ b � 2a:

If b > a and t0 < 2a, then

(t0 � R)E(R)� = t0 < 2a < a+ b:
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If b > a and t0 � 2a, then

(t0 � R)E(R)� = 2a < a+ b

by a simple computation. Finally, if b � a and t0 � a+ b, then

(t0 � R)E(R)� =
(t0 �R)(a + b)

a+ b+ �R
< a + b � 2a

because R > (t0 � a� b)=(1 + �) (see (21)).

Using (22) one can readily verify that E is a correctly de�ned, nonnegative,

non-increasing, locally absolutely continuous function for all t � 0, and E(0) = 1.

Let us assume for the moment the existence of a locally absolutely continuous

function � satisfying (1)�(2); and prove the optimality of the estimates of Theorem

2.

Let us compute E(t0) = E(R). If b > a, then

E(t0) =

8><
>:
1 if t0 < 2a;�
a+b+�t0

a+b+2�a

�
�1=�

if t0 � 2a and � 6= 0;

e(2a�t
0
)=(a+b) if t0 � 2a and � = 0.

This proves the optimality of the estimates (8), (10), (12). If b � a, then

E(t0) =

8><
>:
1 if t0 < a+ b;�
a+b+�R

a+b

�
�1=�

if t0 � a+ b and � 6= 0;

e�R=(a+b) if t0 � a+ b and � = 0.

Letting R ! (t0 � a � b)=(1 + �) (see (21)) hence the optimality of the estimates

(7), (9), (11) follows.

It remains to construct a locally absolutely continuous function � : [0;+1)!

R satisfying (1) and (2). De�ne

�(t) =

8<
:
aE(t) if 0 � t � R;

aE(R)� (t �R)E(R)�+1 if R � t � t0;

(a� (t0 � R)E(R)�)E(t) if t � t0.

Then � is locally absolutely continuous. The property (1) is obvious for

0 � t � R; for t > R it follows easily using (23):

aE(t) � �(t) � (a � (t0 � R)E(R)�)E(t) � �aE(t):

Next we claim that

�0 = �bE0 �E�+1 a.e. in [0;+1);

in particular, (2) is satis�ed. Indeed, in (0; R) we have

(bE0 + �0)(t) = (a+ b)E0(t) = �E(t)�+1:
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In (R; t0) we have

(bE0 + �0)(t) = �E(R)�+1 = �E(t)�+1:

In (t0;+1) we have

(bE0 + �0)(t) = (a+ b� (t0 � R)E(R)�)E0(t) = �E(t)�+1

by another simple computation.

The proof of Theorem 2 is completed.

4. COMPARISON OF PROPOSITION 1 AND THEOREM 2

We are going to show that the estimates of Proposition 1 are optimal only in

trivial cases. As in Proposition 1, assume that � = 0 and a > 0.

a) If b � �a, then (1) � (3) has no solution; this was not revealed by the

Liapunov method: we only obtained in this case the estimate

E(t) �

�
1 if 0 � t � 2a;
t
2a
e(2a�t)=(2a) if t � 2a

(cf. (6)).

b) If �a < b � a, then we have to compare the estimates (6) and (9). For

0 � t � a+ b they both give E(t) � 1. For a+ b < t � 2a the estimate (9) is better

because

e(a+b�t)=(a+b) < 1:

Finally, for t > 2a the estimate (9) is better again because

e(a+b�t)=(a+b) <
t

2a
e(2a�t)=(2a):

Indeed, we have

e(a+b�t)=(a+b) � e(2a�t)=(2a) <
t

2a
e(2a�t)=(2a):

c) If b > a, then we have to compare the estimates (6) and (10). For 0 � t �

2a they both give E(t) � 1.

In order to show that for t � 2a b+a
b�a

the estimate (10) is better than (6), we

have to prove that

(24) e(2a�t)=(a+b) <
b+ a

b� a
e�t=(a+b):

Putting x = 2a=(a + b) we have 0 < x < 1, and the inequality takes the form

ex < 1=(1� x). This inequality is trivially satis�ed:

ex =

1X
i=1

xi

i!
<

1X
i=1

xi = 1=(1� x):
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Finally, in order to show that for 2a < t � 2a b+a
b�a

the estimate (10) is better

than (6), we have to prove the inequality

e(2a�t)=(a+b) <
t

2a
e(2a�t)=(2a):

Keeping a and t �xed, let us increase b until t = 2a b+a
b�a

(then the left-hand side

of the inequality increases). Then our inequality coincides with (24) and the claim

follows.
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