DIFFERENTIAL AND INTEGRAL INEQUALITIES

Vilmos Komornik

Dedicated to the memory of Professor Dragoslav S. Mitrinović

1. INTRODUCTION

Let $E:[0,+\infty) \rightarrow \mathbf{R}$ be a nonnegative, non-increasing, locally absolutely continuous function. Assume that there exists another locally absolutely continuous function $\rho:[0,+\infty) \rightarrow \mathbf{R}$ and there are three real numbers a, b and α such that

$$
\begin{equation*}
|\rho| \leq a E \text { in }[0,+\infty) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho^{\prime} \leq-b E^{\prime}-E^{\alpha+1} \quad \text { a.e. in }[0,+\infty) \tag{2}
\end{equation*}
$$

How can we estimate $E(t)$?
Problems of this type often appear during the study of dissipative linear evolutionary problems where E denotes the energy of the solution. It is sufficient to consider the case where $E(0)=1$. Indeed, if $E(0)=0$, then $E \equiv 0$. On the other hand, if $E(0)>0$, then replacing E, ρ, a and b respectively by $E / E(0), \rho E(0)^{-\alpha-1}$, $a E(0)^{-\alpha}$ and $a E(0)^{-\alpha}$, we obtain a solution of $(1),(2)$ satisfying $E(0)=1$. We will therefore assume in the sequel that

$$
\begin{equation*}
E(0)=1 \tag{3}
\end{equation*}
$$

Let us briefly recall the Liapunov method as usually applied to this problem (see e.g. $[\mathbf{1}],[\mathbf{4}],[\mathbf{5}],[\mathbf{1 0}],[\mathbf{1 1}]$). Fix a real number d satisfying
(4)

$$
d>a \text { and } d \geq b
$$

[^0]and consider the function $F:=d E+\rho$. One can readily verify that $F:[0,+\infty) \rightarrow \mathbf{R}$ is nonnegative, non-increasing, locally absolutely continuous. Furthermore,
$$
0 \leq(d-a) E \leq F \leq(d+a) E \text { in }[0,+\infty)
$$
and
$$
F^{\prime} \leq-(d+a)^{-\alpha-1} F^{\alpha+1} \text { a.e. in }[0,+\infty)
$$

Dividing by $F^{\alpha+1}$ and integrating it follows that

$$
F(t) \leq \begin{cases}F(0) e^{-t /(d+a)} & \text { if } \alpha=0 \\ \left(F(0)^{-\alpha}+\alpha(d+a)^{-\alpha-1} t\right)^{-1 / \alpha} & \text { if } \alpha \neq 0\end{cases}
$$

and therefore

$$
E(t) \leq \begin{cases}\frac{d+a}{d-a} e^{-t /(d+a)} & \text { if } \alpha=0 \\ \frac{d+a}{d-a}\left(\frac{d+a+\alpha t}{d+a}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0\end{cases}
$$

for all $t \geq 0$ such that $E(t)>0$.
Next we minimize the right-hand side of this estimate with respect to d satisfying (4). Since (as we shall see at the end of this paper) this method does not lead to sharp estimates, we only consider henceforth the special case where

$$
\alpha=0 \quad \text { and } \quad a>0 .
$$

Then we have

$$
\begin{equation*}
E(t) \leq \frac{d+a}{d-a} e^{-t /(d+a)}=: f(d) \tag{5}
\end{equation*}
$$

for all $t \geq 0$ and for all d satisfying (4). (Observe that this inequality makes sense and remains valid without the assumption $E(t)>0$.)

An easy computation shows that

$$
f^{\prime}(d)=e^{-t /(d+a)} \frac{(t-2 a) d-(t+2 a) a}{(d-a)^{2}(d+a)}
$$

Hence f is decreasing (resp. increasing) if $(t-2 a) d-(t+2 a) a<0$ (resp. >0).
If $0 \leq t \leq 2 a$, then f is decreasing in $(a,+\infty)$ and tends to 1 as $t \rightarrow+\infty$. Therefore we only obtain the trivial estimate $E(t) \leq 1$.

If $t>2 a$, then f decreases in (a, A) and increases in $(A,+\infty)$ where

$$
A=\frac{t+2 a}{t-2 a} a \quad(>a)
$$

We distinguish two cases:
If $b \leq A$, then choosing $d=A$ in (5) we obtain that

$$
E(t) \leq \frac{t}{2 a} e^{-(t-2 a) /(2 a)}
$$

If $b \geq A$, then choosing $d=b$ in (5) we conclude that

$$
E(t) \leq \frac{b+a}{b-a} e^{-t /(b+a)}
$$

If $b \leq a$, then $b \leq A$ for all $t>2 a$. If $b>a$, then $b \leq A$ if and only if $2 a<t \leq 2 a \frac{b+a}{b-a}$.

We have thus proven the following:
Proposition 1. If E, ρ solve (1) - (3) with $\alpha=0$ and $a>0$, then we have the following estimates:

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq 2 a \tag{6}\\ \frac{t}{2 a} e^{(2 a-t) /(2 a)} & \text { if } b \leq a \text { and } t \geq 2 a \\ \frac{t}{2 a} e^{(2 a-t) /(2 a)} & \text { if } b>a \text { and } 2 a \leq t \leq 2 a \frac{b+a}{b-a} \\ \frac{b+a}{b-a} e^{-t /(b+a)} & \text { if } b>a \text { and } t \geq 2 a \frac{b+a}{b-a}\end{cases}
$$

Despite the very frequent application of this method, the above estimates are not optimal. Applying a different method we shall prove

Theorem 2. a) The problem (1) - (3) has no solution unless $\alpha>-1, a \geq 0$ and $a+b>0$.
b) If E, ρ solve (1)-(3) with some $\alpha>0$, then we have the following estimates:
b1) If $-a<b \leq a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq(a+b) \tag{7}\\ \left(\frac{a+b+\alpha t}{(a+b)(1+\alpha)}\right)^{-1 / \alpha} & \text { if } t \geq(a+b)\end{cases}
$$

and in the second case the inequality is strict;
b2) If $b>a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq 2 a \tag{8}\\ \left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } t \geq 2 a\end{cases}
$$

c) If E, ρ solve (1) $-(3)$ with $\alpha=0$, then we have the following estimates: c1) If $-a<b \leq a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq a+b \tag{9}\\ e^{(a+b-t) /(a+b)} & \text { if } t \geq a+b\end{cases}
$$

and in the second case the inequality is strict;
c2) If $b>a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq 2 a \tag{10}\\ e^{(2 a-t) /(a+b)} & \text { if } t \geq 2 a\end{cases}
$$

d) If E, ρ solve (1) $-(3)$ with some $-1<\alpha<0$, then we have the following estimates:
d1) If $-a<b \leq a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq(a+b) \tag{11}\\ \left(\frac{a+b+\alpha t}{(a+b)(1+\alpha)}\right)^{-1 / \alpha} & \text { if }(a+b) \leq t<(a+b) /|\alpha| \\ 0 & \text { if } t \geq(a+b) /|\alpha|\end{cases}
$$

and in the second case the inequality is strict;
d2) If $b>a$, then

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq 2 a \tag{12}\\ \left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } 2 a \leq t \leq(a+b) /|\alpha| \\ 0 & \text { if } t \geq(a+b) /|\alpha|\end{cases}
$$

The above estimates are optimal.
Remark. Letting $\alpha \rightarrow 0$ in the formulae corresponding to $\alpha \neq 0$ we find the formulae for $\alpha=0$.

For the proof of Theorem 2, we will have to study a closely related integral inequality, already used in [2], [3], [6]-[9]:

$$
\begin{equation*}
\int_{t}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s \leq T E(t), \quad t \geq 0 \tag{13}
\end{equation*}
$$

Here we only assume that $E:[0,+\infty) \rightarrow \mathbf{R}$ is a nonnegative, non-increasing (hence measurable) function and that α, T are given real numbers. If $E(0)=0$, then $E \equiv 0$. If $E(0)>0$, then replacing E by $E / E(0)$ and T by $T E(0)^{-\alpha}$ we obtain a solution of (13) such that $E(0)=1$.

Furthermore, in order to avoid the trivial solution

$$
E(t)= \begin{cases}1 & \text { if } t=0 \\ 0 & \text { if } t>0\end{cases}
$$

we shall only consider consider solutions of (13) such that

$$
\begin{equation*}
E(0)=1 \quad \text { and } \quad E \not \equiv 0 \text { in }(0, \infty) \tag{14}
\end{equation*}
$$

The following result, interesting in itself, completes some earlier theorems of Haraux [2], [3]:
Theorem 3. a) The problem (13) - (14) has no solution unless $\alpha>-1$ and $T>0$.
b) If E solves (13) - (14) with some $\alpha>0$, then we have the following estimates:

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq T \tag{15}\\ \left(\frac{T+\alpha t}{T+\alpha T}\right)^{-1 / \alpha} & \text { if } t \geq T\end{cases}
$$

Moreover, the second inequality is strict if E is right continuous.
d) If E solves $(13)-(14)$ with $\alpha=0$, then we have the following estimates:

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq T \tag{16}\\ e^{(T-t) / T} & \text { if } t \geq T\end{cases}
$$

Moreover, the second inequality is strict if E is right continuous.
e) If E solves $(13)-(14)$ with some $-1<\alpha<0$, then we have the following estimates:

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq T \tag{17}\\ \left(\frac{T+\alpha t}{T+\alpha T}\right)^{-1 / \alpha} & \text { if } T \leq t<T /|\alpha| \\ 0 & \text { if } t \geq T /|\alpha|\end{cases}
$$

Moreover, the second inequality is strict if E is right continuous.
These estimates are optimal.
REmark. As in the preceding results, letting $\alpha \rightarrow 0$ in the formulae corresponding to $\alpha \neq 0$ we find the formulae for $\alpha=0$.

2. PROOF Of THEOREM 3

If $\alpha \leq-1$, then (13) is meaningful only if $E(t)>0$ for all $t>0$. However, then $E(s)^{\alpha+1} \geq E(0)^{\alpha+1}=1$ for all $s \geq 0$ and therefore the integral on the left-hand side of (14) is infinite.

If $T \leq 0$, then (13) implies at once that E vanishes in $(0,+\infty)$, contradicting (14).

Thus part a) of the theorem is proven. Henceforth we may therefore assume that $\alpha>-1$ and $T>0$.

If $0 \leq t \leq T$, then the estimates $E(t) \leq 1$ of (15)-(17) follow simply from the non-increasingness of E. Also, there is nothing to prove if $t \geq B$ where

$$
B=\sup \{r \geq 0 \mid E(r)>0\}
$$

We may thus assume that $T<t<B$.
The formula

$$
F(r)=\int_{r}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s
$$

defines a nonnegative, non-increasing and locally absolutely continuous function $F:[0, \infty) \rightarrow \mathbf{R}$. It follows from (13) that

$$
-F^{\prime} \geq T^{-\alpha-1} F^{\alpha+1}
$$

almost everywhere in $(0, \infty)$. Dividing by $F^{\alpha+1}$ and integrating in $(0, s)$, we obtain for every $0<s<B$ the following inequalities:

$$
F(s) \leq \begin{cases}\left(F(0)^{-\alpha}+\alpha T^{-\alpha-1} s\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ F(0) e^{-s / T} & \text { if } \alpha=0\end{cases}
$$

Since $F(0) \leq T$ by $(13)-(14)$, these inequalities remain valid if we replace $F(0)$ by T. Furthermore, we have

$$
F(s) \geq \int_{s}^{T+(\alpha+1) s} E(r)^{\alpha+1} \mathrm{~d} r \geq(T+\alpha s) E(T+(\alpha+1) s)^{\alpha+1}
$$

Therefore, we deduce from the preceding inequalities the estimates

$$
(T+\alpha s) E(T+(\alpha+1) s)^{\alpha+1} \leq \begin{cases}\left(T^{-\alpha}+\alpha T^{-\alpha-1} s\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ T e^{-s / T} & \text { if } \alpha=0\end{cases}
$$

or equivalently,

$$
E(T+(\alpha+1) s) \leq \begin{cases}\left(\frac{T+\alpha s}{T}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ e^{-s / T} & \text { if } \alpha=0\end{cases}
$$

for all $0<s<B$.
If $\alpha \geq 0$, then these estimates obviously remain valid for all $s>0$. Choosing $s=\frac{t-T}{\alpha+1}$ hence (15) - (16) follow.

If $-1<\alpha<0$, then the right-hand side of the above estimate is meaningless for $s \geq T /|\alpha|$. Hence $E(t)=0$ for all $t \geq T /|\alpha|$, proving the third inequality in (17). Furthermore, the above estimate obviously remains valid for all $0<s<T /|\alpha|$. Since $T<t<B$ implies that $0<\frac{t-T}{\alpha+1}<T /|\alpha|$, we may choose $s=\frac{t-T}{\alpha+1}$ in the above estimate, and the second inequality of (17) follows.

Now assume that E is right continuous and prove that the second inequalities of (15) - (17) are strict. Assume on the contrary that we have equality in the second inequality of one of the formulae (15) - (17) for some $t^{\prime} \geq T$:

$$
E\left(t^{\prime}\right)= \begin{cases}\left(\frac{T+\alpha t^{\prime}}{T+\alpha T}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \tag{18}\\ e^{\left(T-t^{\prime}\right) / T} & \text { if } \alpha=0\end{cases}
$$

Using the right continuity of E in t^{\prime}, there is a constant $0<\beta<1$ such that

$$
\int_{0}^{t^{\prime}} E^{\alpha+1} \mathrm{~d} s \leq \beta \int_{0}^{+\infty} E^{\alpha+1} \mathrm{~d} s
$$

It follows that the function

$$
G(t)= \begin{cases}E(t) & \text { if } 0 \leq t \leq t^{\prime} \\ 0 & \text { if } t>t^{\prime}\end{cases}
$$

also satisfies $(13)-(14)$, even if we replace the constant T in (13) by βT. Applying the already proved (weak) estimates (15) - (17), we have

$$
G\left(t^{\prime}\right) \leq \begin{cases}\left(\frac{\beta T+\alpha t^{\prime}}{\beta T+\alpha \beta T}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ e^{\left(\beta T-t^{\prime}\right) /(\beta T)} & \text { if } \alpha=0\end{cases}
$$

(Note that the third case in (17) cannot occur because $G\left(t^{\prime}\right)>0$ by assumption.) Using (18) and the equality $G\left(t^{\prime}\right)=E\left(t^{\prime}\right)>0$, it follows that

$$
\begin{cases}\left(\frac{T+\alpha t^{\prime}}{T+\alpha T}\right)^{-1 / \alpha} \leq\left(\frac{\beta T+\alpha t^{\prime}}{\beta T+\alpha \beta T}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ e^{\left(T-t^{\prime}\right) / T} \leq e^{\left(\beta T-t^{\prime}\right) /(\beta T)} & \text { if } \alpha=0\end{cases}
$$

But both inequalities contradict the property $\beta<1$.
Let us now turn to the proof of the optimality of the estimates (15) - (17). Fix $\alpha>-1, T>0$ and $t^{\prime} \geq 0$ arbitrarily. If $0 \leq t^{\prime}<T$, then we have to construct a solution of $(13)-(14)$ such that $E(0)=E\left(t^{\prime}\right)=1$. Choose simply

$$
E(t)= \begin{cases}1 & \text { if } 0 \leq t \leq T \\ 0 & \text { if } t>T\end{cases}
$$

The verification of (13) is immediate: the case $t>T$ is trivial, while for $0 \leq t \leq T$ we have

$$
\int_{t}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s \leq \int_{t}^{T} 1 \mathrm{~d} s \leq T=T E(t)
$$

We may even construct continuous examples, e.g.,

$$
E(t)= \begin{cases}1 & \text { if } 0 \leq t \leq t^{\prime} \\ (T-t) /\left(T-t^{\prime}\right) & \text { if } t^{\prime} \leq t \leq T \\ 0 & \text { if } t>T\end{cases}
$$

If $t^{\prime} \geq T$ (for $\left.\alpha \geq 0\right)$ or $T \leq t^{\prime}<T /|\alpha|$ (for $-1<\alpha<0$), then we have to construct a solution of (13) - (14) such that

$$
E\left(t^{\prime}\right)= \begin{cases}\left(\frac{T+\alpha t^{\prime}}{T+\alpha T}\right)^{-1 / \alpha} & \text { if } \alpha \neq 0 \\ e^{\left(T-t^{\prime}\right) / T} & \text { if } \alpha=0\end{cases}
$$

If $\alpha=0$, then let us choose

$$
E(t)= \begin{cases}e^{-t / T} & \text { if } 0 \leq t \leq t^{\prime}-T \\ e^{-\left(t^{\prime}-T\right) / T} & \text { if } t^{\prime}-T \leq t \leq t^{\prime} \\ 0 & \text { if } t>t^{\prime}\end{cases}
$$

If $\alpha \neq 0$, then let us choose

$$
E(t)= \begin{cases}\left(\frac{T+\alpha t}{T}\right)^{-1 / \alpha} & \text { if } 0 \leq t \leq \frac{t^{\prime}-T}{\alpha+1} \\ \left(\frac{T+\alpha t^{\prime}}{T+\alpha T}\right)^{-1 / \alpha} & \text { if } \frac{t^{\prime}-T}{\alpha+1} \leq t \leq t^{\prime} \\ 0 & \text { if } t>t^{\prime}\end{cases}
$$

(Note that these functions are not continuous.)
The only nontrivial property to verify is (13) for $0 \leq t \leq \frac{t^{\prime}-T}{\alpha+1}$. Since $E^{\alpha+1}=$ $-T E^{\prime}$ in $\left(0, \frac{t^{\prime}-T}{\alpha+1}\right)$ in all cases, we have in fact equality:

$$
\begin{aligned}
\int_{t}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s & =\int_{t}^{\left(t^{\prime}-T\right) /(\alpha+1)} E(s)^{\alpha+1} \mathrm{~d} s+\int_{\left(t^{\prime}-T\right) /(\alpha+1)}^{t^{\prime}} E(s)^{\alpha+1} \mathrm{~d} s \\
& =T E(t)-T E\left(\frac{t^{\prime}-T}{\alpha+1}\right)+\left(t^{\prime}-\frac{t^{\prime}-T}{\alpha+1}\right) E\left(\frac{t^{\prime}-T}{\alpha+1}\right)^{\alpha+1} \\
& =T E(t)
\end{aligned}
$$

The proof of Theorem 3 is completed.

3. PROOF OF THEOREM 2

We begin with a lemmarelating the problem (1) - (3) to the integral inequality (13) - (14).

Lemma 4. If E, ρ solve (1) - (3) with some a, b and α, then E also solves (13) - (14) with the same α and with $T=a+b$.

Proof. Since the solutions E of (1) - (3) are continuous, (3) implies (14).
It follows from (1) - (2) and from the non-increasingness of E that

$$
\begin{equation*}
\int_{t}^{t^{\prime}} E(s)^{\alpha+1} \mathrm{~d} s \leq[b E+\rho]_{t^{\prime}}^{t} \leq 2(|a|+|b|) E(t) \tag{19}
\end{equation*}
$$

for all $0 \leq t<t^{\prime}<+\infty$. Letting $t^{\prime} \rightarrow+\infty$ hence we conclude that

$$
\int_{t}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s \leq 2(|a|+|b|) E(t)
$$

for all $t \geq 0$. Applying Theorem 3 it follows that $E\left(t^{\prime}\right) \rightarrow 0$ as $t^{\prime} \rightarrow \infty$. Using (1) we also obtain that $\rho\left(t^{\prime}\right) \rightarrow 0$ as $t^{\prime} \rightarrow+\infty$. Hence, letting $t^{\prime} \rightarrow \infty$ in the first inequality of (19), we conclude that

$$
\int_{t}^{+\infty} E(s)^{\alpha+1} \mathrm{~d} s \leq b E(t)+\rho(t)
$$

Applying (1) again, hence (13) follows.
It follows at once from (1) and (3) that $a \geq 0$. The rest of part a and parts $b 1, c 1, d 1$ Theorem 2 follow at once from Lemma 4 and Theorem 3, including the strict inequalities.

It remains to prove the estimates (8), (10) and (12). Since the inequality $E(t) \leq 1$ is obvious, we have to prove for $\alpha>-1, b>a \geq 0$ and $t>2 a$ the
following estimates:

$$
E(t) \leq \begin{cases}\left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } \alpha>0 \tag{20}\\ e^{(2 a-t) /(a+b)} & \text { if } \alpha=0 ; \\ \left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } \alpha<0 \text { and } t \leq(a+b) /|\alpha| ; \\ 0 & \text { if } \alpha<0 \text { and } t>(a+b) /|\alpha| .\end{cases}
$$

Clearly, we may also assume that

$$
t<B:=\sup \{r \geq 0 \mid E(r)>0\}
$$

Dividing the inequality (2) by $E^{\alpha+1}$, then integrating in ($0, t$) and using (1), we obtain that

$$
\begin{aligned}
\int_{0}^{t} b E^{-\alpha-1} E^{\prime} \mathrm{d} s & \leq \int_{0}^{t}-1-\rho^{\prime} E^{-\alpha-1} \mathrm{~d} s \\
& =\left[-\rho E^{-\alpha-1}\right]_{0}^{t}+\int_{0}^{t}-1-(\alpha+1) \rho E^{-\alpha-2} E^{\prime} \mathrm{d} s \\
& \leq a E(t)^{-\alpha}+a E(0)^{-\alpha}-t-(\alpha+1) a \int_{0}^{t} E^{-\alpha-1} E^{\prime} \mathrm{d} s
\end{aligned}
$$

whence

$$
(b+a+\alpha a) \int_{0}^{t} E^{-\alpha-1} E^{\prime} \mathrm{d} s \leq a E(t)^{-\alpha}+a E(0)^{-\alpha}-t
$$

Computing the integral, it follows easily that

$$
E(t) \leq \begin{cases}\left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } \alpha>0 \\ e^{(2 a-t) /(a+b)} & \text { if } \alpha=0 \\ \left(\frac{a+b+\alpha t}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } \alpha<0\end{cases}
$$

Comparing with (20), it only remains to show that $E(t)=0$ if $\alpha<0$ and $t>$ $(a+b) /|\alpha|$. Let us observe that for $\alpha<0$ the right-hand side of the last inequality vanishes for $t=(a+b) /|\alpha|$. It cannot occur if $E(t)>0$, therefore $E((a+b) /|\alpha|)=0$ and our claim follows.

Now we are going to prove the optimality of our estimates (7) - (12). Fix $\alpha>-1, a \geq 0, b>-a$ arbitrarily. Furthermore, fix $t^{\prime} \geq 0$ arbitrarily if $\alpha \geq 0$ and fix $0 \leq t^{\prime}<(a+b) /|\alpha|$ arbitrarily if $-1<\alpha<0$.

Let us define a number R in the following way: set

$$
R= \begin{cases}0 & \text { if } b \leq a \text { and } t^{\prime}<a+b ; \\ 0 & \text { if } b>a \text { and } t^{\prime}<2 a \\ \frac{(a+b)\left(t^{\prime}-2 a\right)}{a+b+2 \alpha a} & \text { if } b>a \text { and } t^{\prime} \geq 2 a .\end{cases}
$$

Furthermore, choose an arbitrary number

$$
\begin{equation*}
\frac{t^{\prime}-a-b}{1+\alpha}<R \leq t^{\prime} \tag{21}
\end{equation*}
$$

if $b \leq a$ and $t^{\prime} \geq a+b$; its value will be precised later.
These definitions are correct and $0 \leq R \leq t^{\prime}$ in all cases.
Next we define the function E. For $\alpha>0$ we set

$$
E(t)= \begin{cases}\left(\frac{a+b+\alpha t}{a+b}\right)^{-1 / \alpha} & \text { if } 0 \leq t \leq R \\ E(R) & \text { if } R<t \leq t^{\prime} \\ E(R)\left(1+\frac{\alpha\left(t-t^{\prime}\right) E(R)^{\alpha}}{a+b-\left(t^{\prime}-R\right) E(R)^{\alpha}}\right)^{-1 / \alpha} & \text { if } t>t^{\prime}\end{cases}
$$

For $\alpha=0$ we define

$$
E(t)= \begin{cases}e^{-t /(a+b)} & \text { if } 0 \leq t \leq R \\ E(R) & \text { if } R<t \leq t^{\prime} \\ E(R) e^{\left(t^{\prime}-t\right) /\left(a+b+R-t^{\prime}\right)} & \text { if } t>t^{\prime}\end{cases}
$$

Finally, for $-1<\alpha<0$ we set

$$
E(t)= \begin{cases}\left(\frac{a+b+\alpha t}{a+b}\right)^{-1 / \alpha} & \text { if } 0 \leq t \leq R \\ E(R) & \text { if } R<t \leq t^{\prime} \\ E(R)\left(1+\frac{\alpha\left(t-t^{\prime}\right) E(R)^{\alpha}}{a+b-\left(t^{\prime}-R\right) E(R)^{\alpha}}\right)^{-1 / \alpha} & \text { if } t^{\prime}<t<t^{\prime \prime} \\ 0 & \text { if } t \geq t^{\prime \prime}\end{cases}
$$

where

$$
t^{\prime \prime}=t^{\prime}+\frac{a+b-\left(t^{\prime}-R\right) E(R)^{\alpha}}{|\alpha| E(R)^{\alpha}}
$$

If $0 \leq t \leq t^{\prime}$, then $a+b+\alpha t>0$; hence $E(t)$ is correctly defined and strictly positive. In particular, $E(R)>0$. Let us show that

$$
\begin{equation*}
\left(t^{\prime}-R\right) E(R)^{\alpha}<a+b \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(t^{\prime}-R\right) E(R)^{\alpha} \leq 2 a \tag{23}
\end{equation*}
$$

Indeed, if $b \leq a$ and $t^{\prime}<a+b$, then

$$
\left(t^{\prime}-R\right) E(R)^{\alpha}=t^{\prime}<a+b \leq 2 a .
$$

If $b>a$ and $t^{\prime}<2 a$, then

$$
\left(t^{\prime}-R\right) E(R)^{\alpha}=t^{\prime}<2 a<a+b
$$

If $b>a$ and $t^{\prime} \geq 2 a$, then

$$
\left(t^{\prime}-R\right) E(R)^{\alpha}=2 a<a+b
$$

by a simple computation. Finally, if $b \leq a$ and $t^{\prime} \geq a+b$, then

$$
\left(t^{\prime}-R\right) E(R)^{\alpha}=\frac{\left(t^{\prime}-R\right)(a+b)}{a+b+\alpha R}<a+b \leq 2 a
$$

because $R>\left(t^{\prime}-a-b\right) /(1+\alpha)($ see $(21))$.
Using (22) one can readily verify that E is a correctly defined, nonnegative, non-increasing, locally absolutely continuous function for all $t \geq 0$, and $E(0)=1$. Let us assume for the moment the existence of a locally absolutely continuous function ρ satisfying (1)-(2), and prove the optimality of the estimates of Theorem 2.

Let us compute $E\left(t^{\prime}\right)=E(R)$. If $b>a$, then

$$
E\left(t^{\prime}\right)= \begin{cases}1 & \text { if } t^{\prime}<2 a \\ \left(\frac{a+b+\alpha t^{\prime}}{a+b+2 \alpha a}\right)^{-1 / \alpha} & \text { if } t^{\prime} \geq 2 a \text { and } \alpha \neq 0 \\ e^{\left(2 a-t^{\prime}\right) /(a+b)} & \text { if } t^{\prime} \geq 2 a \text { and } \alpha=0\end{cases}
$$

This proves the optimality of the estimates (8), (10), (12). If $b \leq a$, then

$$
E\left(t^{\prime}\right)= \begin{cases}1 & \text { if } t^{\prime}<a+b ; \\ \left(\frac{a+b+\alpha R}{a+b}\right)^{-1 / \alpha} & \text { if } t^{\prime} \geq a+b \text { and } \alpha \neq 0 \\ e^{-R /(a+b)} & \text { if } t^{\prime} \geq a+b \text { and } \alpha=0 .\end{cases}
$$

Letting $R \rightarrow\left(t^{\prime}-a-b\right) /(1+\alpha)$ (see (21)) hence the optimality of the estimates (7), (9), (11) follows.

It remains to construct a locally absolutely continuous function $\rho:[0,+\infty) \rightarrow$ R satisfying (1) and (2). Define

$$
\rho(t)= \begin{cases}a E(t) & \text { if } 0 \leq t \leq R ; \\ a E(R)-(t-R) E(R)^{\alpha+1} & \text { if } R \leq t \leq t^{\prime} \\ \left(a-\left(t^{\prime}-R\right) E(R)^{\alpha}\right) E(t) & \text { if } t \geq t^{\prime}\end{cases}
$$

Then ρ is locally absolutely continuous. The property (1) is obvious for $0 \leq t \leq R$; for $t>R$ it follows easily using (23):

$$
a E(t) \geq \rho(t) \geq\left(a-\left(t^{\prime}-R\right) E(R)^{\alpha}\right) E(t) \geq-a E(t)
$$

Next we claim that

$$
\rho^{\prime}=-b E^{\prime}-E^{\alpha+1} \text { a.e. in }[0,+\infty) ;
$$

in particular, (2) is satisfied. Indeed, in $(0, R)$ we have

$$
\left(b E^{\prime}+\rho^{\prime}\right)(t)=(a+b) E^{\prime}(t)=-E(t)^{\alpha+1}
$$

In (R, t^{\prime}) we have

$$
\left(b E^{\prime}+\rho^{\prime}\right)(t)=-E(R)^{\alpha+1}=-E(t)^{\alpha+1}
$$

In $\left(t^{\prime},+\infty\right)$ we have

$$
\left(b E^{\prime}+\rho^{\prime}\right)(t)=\left(a+b-\left(t^{\prime}-R\right) E(R)^{\alpha}\right) E^{\prime}(t)=-E(t)^{\alpha+1}
$$

by another simple computation.
The proof of Theorem 2 is completed.

4. COMPARISON OF PROPOSITION 1 AND THEOREM 2

We are going to show that the estimates of Proposition 1 are optimal only in trivial cases. As in Proposition 1, assume that $\alpha=0$ and $a>0$.
a) If $b \leq-a$, then (1) - (3) has no solution; this was not revealed by the Liapunov method: we only obtained in this case the estimate

$$
E(t) \leq \begin{cases}1 & \text { if } 0 \leq t \leq 2 a \\ \frac{t}{2 a} e^{(2 a-t) /(2 a)} & \text { if } t \geq 2 a\end{cases}
$$

(cf. (6)).
b) If $-a<b \leq a$, then we have to compare the estimates (6) and (9). For $0 \leq t \leq a+b$ they both give $E(t) \leq 1$. For $a+b<t \leq 2 a$ the estimate (9) is better because

$$
e^{(a+b-t) /(a+b)}<1
$$

Finally, for $t>2 a$ the estimate (9) is better again because

$$
e^{(a+b-t) /(a+b)}<\frac{t}{2 a} e^{(2 a-t) /(2 a)}
$$

Indeed, we have

$$
e^{(a+b-t) /(a+b)} \leq e^{(2 a-t) /(2 a)}<\frac{t}{2 a} e^{(2 a-t) /(2 a)}
$$

c) If $b>a$, then we have to compare the estimates (6) and (10). For $0 \leq t \leq$ $2 a$ they both give $E(t) \leq 1$.

In order to show that for $t \geq 2 a \frac{b+a}{b-a}$ the estimate (10) is better than (6), we have to prove that

$$
\begin{equation*}
e^{(2 a-t) /(a+b)}<\frac{b+a}{b-a} e^{-t /(a+b)} \tag{24}
\end{equation*}
$$

Putting $x=2 a /(a+b)$ we have $0<x<1$, and the inequality takes the form $e^{x}<1 /(1-x)$. This inequality is trivially satisfied:

$$
e^{x}=\sum_{i=1}^{\infty} \frac{x^{i}}{i!}<\sum_{i=1}^{\infty} x^{i}=1 /(1-x)
$$

Finally, in order to show that for $2 a<t \leq 2 a \frac{b+a}{b-a}$ the estimate (10) is better than (6), we have to prove the inequality

$$
e^{(2 a-t) /(a+b)}<\frac{t}{2 a} e^{(2 a-t) /(2 a)}
$$

Keeping a and t fixed, let us increase b until $t=2 a \frac{b+a}{b-a}$ (then the left-hand side of the inequality increases). Then our inequality coincides with (24) and the claim follows.

REFERENCES

1. F. Conrad, B. Rao: Decay of solutions of wave equations in a star-shaped domain with nonlinear boundary feedback. Asymptotic Anal., 7 (1993), 159-177.
2. A. Haraux: Oscillations forcées pour certains systèmes dissipatifs non linéaires. Publication du Laboratoire d'Analyse Numérique No. 78010, Université Pierre et Marie Curie, Paris, 1978.
3. A. Haraux: ,Semi-groupes linéaires et équations d'évolution linéaires périodiques. Publication du Laboratoire d'Analyse Numérique No. 78011, Université Pierre et Marie Curie, Paris, 1978.
4. A. Haraux, E. Zuazua: Decay estimates for some semilinear damped hyperbolic problems. Arch. Rat. Mech. Anal. (1988), 191-206.
5. V. Komornik, E. Zuazua: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl., 69 (1990), 33-54.
6. V. Komornik: Rapid boundary stabilization of the wave equation. SIAM J. Control Opt., 29 (1991), 197-208.
7. V. Komornik: On the nonlinear boundary stabilization of the wave equation. Chin. Ann. of Math. 14B:2 (1993), 153-164.
8. V. Komornik: On the nonlinear boundary stabilization of Kirchhoff plates. Nonlinear Diff. Equations and Appl. (NoDEA) 1 (1994), 323-337.
9. V. Komornik: Boundary stabilization, observation and control of Maxwell's equations. PanAmerican Math. J., 4 (1994) No. 4, 47-61.
10. J. Lagnese: Boundary Stabilization of Thin Plates. SIAM Studies in Appl. Math., Philadelphia, 1989.
11. E. Zuazua: Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Opt. 28 (1989), 265-268.

Istitut de Recherche Mathematique Avancée,
(Received September 15, 1995)
Université Louis Pasteur et C.N.R.S,
7 , rue René Descartes, 67084 Strasbourg Cédex,
France

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26D10

