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A BRANCH AND BOUND ALGORITHM
FOR SOLVING A GENERALIZED
TRAVELING SALESMAN PROBLEM

Viadimir Dimitrijevié, Mian Milosavljevié, Milan Markovié

Following the basic model of the Traveling Salesman Problem (TSP), we con-
sider a more general combinatorial optimization problem: TSP on multipartite
(mp) digraphs, known as Generalized TSP (GTSP). The GTSP can be stated
as: find a minimum cost cycle which includes exactly one vertex from each
supervertex in an mp-digraph. We propose a branch and bound algorithm for
solving the GTSP which is based on the minimal rooted tree as a relaxation.
Presented experimental results point to the problem dimension up to which
it can be solved in a reasonable time, depending on the available computer

resources.

1. INTRODUCTION

Let G, pn(s,n > 2) be a weighted, complete, multipartite digraph (in the
following an mp-digraph). The parameter s is the number of groups of vertices,
called supervertices, and n is the number of vertices within each supervertex. Arcs
join vertices between different supervertices, while there are no arcs between any
two vertices within a supervertex. Note that the associated distance matrix C' is a
block matrix with s? square blocks of order n. Each block contains the arcs lengths
(distances) between vertices in the corresponding supervertices. Diagonal blocks
contain only a sufficiently large positive constant thereby eliminating connections
within a supervertex in a solution.

The Generalized Traveling Salesman Problem (GTSP) can be stated as
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Problem: Find a mwmnimum cost s-cycle which includes exactly one vertex from
each supervertexr in an mp-digraph.

The GTSP is really a generalized Traveling Salesman Problem (TSP) because
TSP is a special case of GTSP; indeed, TSP 1s GTSP with vertex sets of cardinality
one. This generalization simultaneously combines the decision of vertex selection
and vertex sequencing.

Since the vertex set possess a “multiple choice” structure, the GTSP allows
alternatives to be considered in the decision process. The first applications of a
GTSP were presented in [5] for sequencing computer files. Various applications of
GTSP are cited in [9] (see also [6]) with respect to warehouse order picking with
multiple stock locations, airport selection and routing for courier planes, postal
routing, routing of welfare clients through governmental agencies and certain types
of flexible manufacturing scheduling. Other relevant references are [11], [8], [7],
[10].

In the sequel, we shall describe a branch and bound algorithm for solving
the GTSP based on [2,3]. The problems of analysis and synthesis of sub-optimal
algorithms or heuristics for solving the GTSP, as well as the problems related to
the finding good lower bounds for the given relaxation tasks are stil open.

2. A BRANCH AND BOUND ALGORITHM

In [2,3] a branch and bound algorithm for the GTSP based on the minimal
rooted directed tree as relaxation is proposed. This algorithm is referred to the
“open” variant of the GTSP,i.e. when a salesman is interested in finding a minimum
cost (s-1)-path which contains exactly one vertex from each supervertex. Also, a
branch and bound algorithm for the GTSP, which combines assignments and the
Lagrangian relaxation technique, was presented in [9] about the same time. The
discussion in the paper is limited to the consideration of the open variant of the
GTSP [2,3].

For the open variant of the GTSP it was reasonable to select the minimal
rooted directed tree problem as the relaxation task, since a path i1s a directed tree
with the property that exactly one arc starts at each vertex, except at a vertex ¢,
the so-called terminal vertex.

The problem of determining the minimal rooted tree can be solved by J.
EDMOND’s algorithm having complexity O(n?) [4].

In solving the relaxation task we have used a variant of the algorithm in which
a fictive equidistante vertex was added to the original mp-digraph . Thus it was
possible to find a minimal arborescence without prior specification of the root.

A characteristic of EDMOND’s algorithm is that in its forward phase it finds
a minimal arborescence by successively including a menimal arc at each vertex 1.
(The minimal arc of a vertex is the shortest arc terminating at this vertex.) In
the case where a cycle is formed, all the vertices of the cycle are merged into a a
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new vertex called a pseudo-vertez. In the next iteration, the algorithm continues
on the new digraph with a reduced number of vertices: pseudo-vertex and all the
remaining vertices which are outside of the pseudo-vertex. All the vertices in the
reduced digraph are treated equally.
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Fig. 1. Expanded and corresponding merged arborescence

Within the initialization of the algorithm this characteristic of the “shrink-
ing vertices” was used to transform every supervertex into a pseudo-vertex, thus
reducing the dimension of the digraph. In other words, finding a minimal arbores-
cence was always performed on the digraph with only s vertices. This is a favorable
property of the chosen relaxation task.

In the second, backward phase, the algorithm expands the pseudo-vertex only
to the level of supervertex. Namely, it does not expand any pseudo-vertex obtained
at the initialization step by shrinking vertices within the supervertex. In this way,
one obtains a minimal (s-1)-arborescence without insight into the structure of a
supervertex. Now, one can apply any branching rule which is suitable for the
standard TSP branch and bound algorithm (with this kind of relaxation).

The first vertex in the minimal arborescence with more than one starting arcs
was chosen as a basis for branching in the search tree.

Let i, be the set of already included and Ej the set of already excluded arcs
of digraph G at step k of the branch and bound algorithm. Let A = {e,ea,... ¢/}
be the set of starting arcs at vertex i. The applied branching rule generates [ 4+ 1
new subproblems, i.e. sons of the problem k& in the search tree:

FEi :EkUA—{el}, 11 :IkU{el};
Es =F,UA— {62} , o =1, U {62} ;
E =L} UA—{el} , Iy :IkU{el} ;

By sy = Ex UA ; I g1y = I -
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In the case, when the (s-1)-arborescence is a path, then supervertices (i.e.
corresponding pseudo-vertices) are expanded and one goes into their structure,
looking for a supervertex with discontinuity, see Fig. 1. If there is no discontinuity
(in each supervertex the arc enters and leaves it at the same vertex) this solution
was a candidate for an optimal one. In the other case, the following branching rule
was applied for the first detected supervertex with discontinuity:

EklekU{el} ) Iklszu{eZ} )
EkzZEkU{eZ} ) IkZZIkU{el} )
Eys = E U {eg,ea} Iz = I,

where the arc e; enters and es leaves the supervertex J.

The starting point in coding the branch and bound algorithm was a gene-
ral implicit enumeration algorithm for solving any NP-hard combinatorial opti-
mization problem. This general program is a part of the programming package
“TSP-SOLVER” [1]. Implemented modifications refer to: relaxation task, check-
ing feasibility of solution, and branching rules.

At the present stage of the algorithm development we choose the depth-first
search variant of the branch and bound algorithm, without any heuristic for the
upper bound estimate.

3. EXPERIMENTAL RESULTS

We have created the set of test problems by specifying the number of su-
pervertices s and the number of vertices n within a supervertex. The arc costs
were generated according to non-Euclidean method as in [6], drawn from a uniform
[0,1000] distribution and then rounded to the nearest integer. For each combination
of s and n ten examples were created. In Table 1, the average values of VAX8800
CPU-time and the number of solved relaxation tasks referred to the ten solved
examples are presented.

Table 1: Efficiency of the proposed branch and bound algorithm

Problem dimensions | Average CPU-time Average number of

s n VAX 8800 (in sec) | solved relaxations tasks
7 4 4.71 340

8 4 12.24 699

9 4 33.62 1373

10 4 123.02 4113

11 4 309.02 8288

12 4 646.35 14779

13 4 1426.85 27485
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