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A BRANCH AND BOUND ALGORITHM

FOR SOLVING A GENERALIZED

TRAVELING SALESMAN PROBLEM

Vladimir Dimitrijevi�c, Milan Milosavljevi�c, Milan Markovi�c

Following the basic model of the Traveling Salesman Problem (TSP), we con-

sider a more general combinatorial optimization problem: TSP on multipartite

(mp) digraphs, known as Generalized TSP (GTSP). The GTSP can be stated

as: �nd a minimum cost cycle which includes exactly one vertex from each

supervertex in an mp-digraph. We propose a branch and bound algorithm for

solving the GTSP which is based on the minimal rooted tree as a relaxation.

Presented experimental results point to the problem dimension up to which

it can be solved in a reasonable time, depending on the available computer

resources.

1. INTRODUCTION

Let Gs;n(s; n � 2) be a weighted, complete, multipartite digraph (in the

following an mp-digraph). The parameter s is the number of groups of vertices,

called supervertices, and n is the number of vertices within each supervertex. Arcs

join vertices between di�erent supervertices, while there are no arcs between any

two vertices within a supervertex. Note that the associated distance matrix C is a

block matrix with s2 square blocks of order n: Each block contains the arcs lengths

(distances) between vertices in the corresponding supervertices. Diagonal blocks

contain only a su�ciently large positive constant thereby eliminating connections

within a supervertex in a solution.

The Generalized Traveling Salesman Problem (GTSP) can be stated as
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Problem: Find a minimum cost s-cycle which includes exactly one vertex from

each supervertex in an mp-digraph.

The GTSP is really a generalized Traveling Salesman Problem (TSP) because

TSP is a special case of GTSP; indeed, TSP is GTSP with vertex sets of cardinality

one. This generalization simultaneously combines the decision of vertex selection

and vertex sequencing.

Since the vertex set possess a \multiple choice" structure, the GTSP allows

alternatives to be considered in the decision process. The �rst applications of a

GTSP were presented in [5] for sequencing computer �les. Various applications of

GTSP are cited in [9] (see also [6]) with respect to warehouse order picking with

multiple stock locations, airport selection and routing for courier planes, postal

routing, routing of welfare clients through governmental agencies and certain types

of exible manufacturing scheduling. Other relevant references are [11], [8], [7],

[10].

In the sequel, we shall describe a branch and bound algorithm for solving

the GTSP based on [2,3]. The problems of analysis and synthesis of sub-optimal

algorithms or heuristics for solving the GTSP, as well as the problems related to

the �nding good lower bounds for the given relaxation tasks are stil open.

2. A BRANCH AND BOUND ALGORITHM

In [2,3] a branch and bound algorithm for the GTSP based on the minimal

rooted directed tree as relaxation is proposed. This algorithm is referred to the

\open" variant of the GTSP, i.e. when a salesman is interested in �nding a minimum

cost (s-1)-path which contains exactly one vertex from each supervertex. Also, a

branch and bound algorithm for the GTSP, which combines assignments and the

Lagrangian relaxation technique, was presented in [9] about the same time. The

discussion in the paper is limited to the consideration of the open variant of the

GTSP [2,3].

For the open variant of the GTSP it was reasonable to select the minimal

rooted directed tree problem as the relaxation task, since a path is a directed tree

with the property that exactly one arc starts at each vertex, except at a vertex t;

the so-called terminal vertex.

The problem of determining the minimal rooted tree can be solved by J.

Edmond's algorithm having complexity O(n2) [4].

In solving the relaxation task we have used a variant of the algorithm in which

a �ctive equidistante vertex was added to the original mp-digraph G: Thus it was

possible to �nd a minimal arborescence without prior speci�cation of the root.

A characteristic of Edmond's algorithm is that in its forward phase it �nds

a minimal arborescence by successively including a minimal arc at each vertex i:

(The minimal arc of a vertex is the shortest arc terminating at this vertex.) In

the case where a cycle is formed, all the vertices of the cycle are merged into a a
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new vertex called a pseudo-vertex. In the next iteration, the algorithm continues

on the new digraph with a reduced number of vertices: pseudo-vertex and all the

remaining vertices which are outside of the pseudo-vertex. All the vertices in the

reduced digraph are treated equally.

�
�
���

PPPPq

��
��1PPPPq

e1 e2

SJ SK

J K

�
�
��

@
@
@R

- -e2

e1

Fig. 1. Expanded and corresponding merged arborescence

Within the initialization of the algorithm this characteristic of the \shrink-

ing vertices" was used to transform every supervertex into a pseudo-vertex, thus

reducing the dimension of the digraph. In other words, �nding a minimal arbores-

cence was always performed on the digraph with only s vertices. This is a favorable

property of the chosen relaxation task.

In the second, backward phase, the algorithm expands the pseudo-vertex only

to the level of supervertex. Namely, it does not expand any pseudo-vertex obtained

at the initialization step by shrinking vertices within the supervertex. In this way,

one obtains a minimal (s-1)-arborescence without insight into the structure of a

supervertex. Now, one can apply any branching rule which is suitable for the

standard TSP branch and bound algorithm (with this kind of relaxation).

The �rst vertex in the minimal arborescence with more than one starting arcs

was chosen as a basis for branching in the search tree.

Let Ik be the set of already included and Ek the set of already excluded arcs

of digraph G at step k of the branch and bound algorithm. Let A = fe1; e2; : : : ; elg

be the set of starting arcs at vertex i: The applied branching rule generates l + 1

new subproblems, i.e. sons of the problem k in the search tree:

Ek1 = Ek [ A � fe1g ; Ik1 = Ik [ fe1g ;

Ek2 = Ek [ A � fe2g ; Ik2 = Ik [ fe2g ;
...

...

Ekl = Ek [ A � felg ; Ikl = Ik [ felg ;

Ek;(l+1) = Ek [ A ; Ik;(l+1) = Ik :
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In the case, when the (s-1)-arborescence is a path, then supervertices (i.e.

corresponding pseudo-vertices) are expanded and one goes into their structure,

looking for a supervertex with discontinuity, see Fig. 1. If there is no discontinuity

(in each supervertex the arc enters and leaves it at the same vertex) this solution

was a candidate for an optimal one. In the other case, the following branching rule

was applied for the �rst detected supervertex with discontinuity:

Ek1 = Ek [ fe1g ; Ik1 = Ik [ fe2g ;

Ek2 = Ek [ fe2g ; Ik2 = Ik [ fe1g ;

Ek3 = Ek [ fe1; e2g ; Ik3 = Ik ;

where the arc e1 enters and e2 leaves the supervertex J:

The starting point in coding the branch and bound algorithm was a gene-

ral implicit enumeration algorithm for solving any NP-hard combinatorial opti-

mization problem. This general program is a part of the programming package

\TSP-SOLVER" [1]. Implemented modi�cations refer to: relaxation task, check-

ing feasibility of solution, and branching rules.

At the present stage of the algorithm development we choose the depth-�rst

search variant of the branch and bound algorithm, without any heuristic for the

upper bound estimate.

3. EXPERIMENTAL RESULTS

We have created the set of test problems by specifying the number of su-

pervertices s and the number of vertices n within a supervertex. The arc costs

were generated according to non-Euclidean method as in [6], drawn from a uniform

[0,1000] distribution and then rounded to the nearest integer. For each combination

of s and n ten examples were created. In Table 1, the average values of VAX8800

CPU-time and the number of solved relaxation tasks referred to the ten solved

examples are presented.

Table 1: E�ciency of the proposed branch and bound algorithm

Problem dimensions Average CPU-time Average number of

s n VAX 8800 (in sec) solved relaxations tasks

7 4 4.71 340

8 4 12.24 699

9 4 33.62 1373

10 4 123.02 4113

11 4 309.02 8288

12 4 646.35 14779

13 4 1426.85 27485
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