TWO INEQUALITIES

A. M. Fink

Dedicated to the memory of Professor Dragoslav S. Mitrinović

Inequalities (2) and (4) are proved.

An inequality that appear in Mitrinović [1, p. 247] is

\[\frac{3x}{2 + \sqrt{1 - x^2}} \leq \sin^{-1} x, \quad 0 \leq x \leq 1. \] (1)

This is best possible at \(x = 0 \) but not at 1. It occurred to me to see if there is a corresponding upper bound for \(\sin^{-1} x \). Indeed there is,

\[\sin^{-1} x \leq \frac{\pi x}{2 + \sqrt{1 - x^2}}, \quad 0 \leq x \leq 1 \] (2)

and equality holds at both ends of the interval. We give a proof of both inequalities. Let

\[f_\alpha(x) = \frac{ax}{2 + \sqrt{1 - x^2}} = \sin^{-1} x, \quad 3 \leq a \leq \pi, \quad 0 \leq x \leq 1. \]

Note that \(f_\alpha(0) = 0 \) and \(f_\alpha(1) = \frac{a - \pi}{2} \leq 0 \) with \(f_\alpha(1) = 0 \). Then

\[f'_\alpha(x) = \left(\sqrt{1 - x^2} \left(2 + \sqrt{1 - x^2} \right)^2 \right)^{-1} \left((2a - 4) \sqrt{1 - x^2} + a - 5 + x^2 \right). \] (3)

Call the second bracket \(g_\alpha(x) \equiv (2a - 4) \sqrt{1 - x^2} + a - 5 + x^2 \) then \(g'_\alpha(a) = \frac{2x}{\sqrt{1 - x^2}} \left(\sqrt{1 - x^2} - (a - 2) \right) \neq 0 \) on \((0,1)\). So \(g \) is monotone decreasing. For \(a = 3 \), \(g_3(0) = 0 \) so \(g_3(x) \leq 0 \) and \(f'_3(2) \leq 0 \) as required to prove (1). For \(a = \pi \), \(g_\pi(x) \) has one zero and so \(f_\pi(x) \) is unimodal with \(f'_\pi(0) > 0 \) and \(f_\pi(0) = f_\pi(1) = 0 \). This proves (2).
Our second inequality concerns log convex functions. If \(f > 0 \) and \(\log f \) is convex on \(\mathbb{R} \) then

\[
\frac{\pi}{4} \int_{-1}^{1} f(x + vt) \cos \frac{\pi t}{2} \, dt \leq \frac{f(x + v) + f(x - v)}{2}, \quad x, v \in \mathbb{R}.
\]

The proof is to write

\[
f(x + tv) \leq f(x + v)^{\frac{1 + t}{2}} f(x - v)^{\frac{1 - t}{2}}, \quad -1 \leq t \leq 1.
\]

Let \(B = \frac{1}{2} \log \frac{f(x + v)}{f(x - v)} \), then

\[
\frac{\pi}{4} \int_{-1}^{1} f(x + vt) \cos \frac{\pi t}{2} \, dt \leq (f(x + v) f(x - v))^{1/2} \frac{\pi}{4} \int_{-1}^{1} \cos \frac{\pi t}{2} e^{Bt} \, dt
\]

\[
= \frac{\pi^{2}}{8} \frac{e^{B} + e^{-B}}{B^{2} + \frac{\pi^{2}}{4}} (f(x + v) f(x - v))^{1/2} = \frac{\pi^{2}}{B^{2} + \frac{\pi^{2}}{4}} f(x + v) f(x - v) \frac{1}{2}.
\]

Equality holds in this argument if \(f(x) \) is linear. In any case, (4) follows. Equality holds in (4) if \(f \) is a constant.

Moreover, if \(f \) is log concave we have

\[
\frac{\pi}{4} \int_{-1}^{1} f(x + vt) \cos \frac{\pi t}{2} \, dt \geq \frac{f(x + v) + f(x - v)}{2} \left(\frac{\pi^{2}}{4} + \frac{\pi^{2}}{4} \log \frac{f(x + v)}{f(x - v)} \right).
\]

REFERENCES

Department of Mathematics, (Received June 19, 1995)
Iowa State University,
of Science and Technology,
400 Carver Hall,
Ames, Iowa 50011–2066,
USA