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CONNECTEDNESS OF THE GENERALIZED

DIRECT PRODUCT OF DIGRAPHS

Milenko V. Petri�c

Dedicated to the memory of Professor Dragoslav S. Mitrinovi�c

Using spectral techniques we prove a theorem giving a necessary and su�-

cient condition for a generalized direct product (GDP) of strongly connected

digraphs (with some additional restrictions) to be strongly connected. In the

case of disconnectedness the number of strong components is given.

The necessary background and terminology can be found in [2]. We will limit

ourselves to de�ning only lesser known terms and those which may cause confusion.

By a digraph throughout this paper we mean a digraph in which both loops

and multiple arcs are allowed. More precisely, a digraph is an ordered pair G =

(V;E); where V (G) = V is a �nite non-empty set and E(G) = E is a family of

ordered pairs of V (multiplicity of which can of course exceed 1). A (undirected)

graph is a symmetric digraph. A digraph G is called complete if each ordered

pair of vertices u; v of G (if loops are not allowed then u 6= v) belongs to E(G)

with the same multiplicity. A digraph is regular of degree r if each indegree and

each outdegree is equal to r: The cycle (directed) is a (strongly) connected regular

digraph of degree 1. A strongly connected digraph G is called bipartite if it has

no odd cycles, or equivalently if the vertex set V of G can be partitioned into two

subsets V1 and V2 such that every arc of G joins a vertex of Vi to a vertex of

Vj , i 6= j: A bipartite digraph G (with partite sets V1 and V2) having additional

property that each ordered pair (u; v), (u 2 Vi; v 2 Vj ; i 6= j), belongs to E(G);

with the same multiplicity, is called bicomplete. By ~Cp (Cp) we denote the directed

(undirected) cycle with p vertices, all arcs of which have the same multiplicity.

The spectrum of a digraph G is the spectrum of its adjacency matrix A(G) =

[aij]
p
1
; where jV (G)j = p and aij � 0 is the number of arcs leading from the vertex

corresponding to ith row to the vertex corresponding to jth column of A: The index
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r of a strongly connected digraph G is its the greatest real eigenvalue. As is known

(theorem of Frobenius) j�ij � r holds, for all eigenvalues �i of G:

Let G be a digraph with at most � parallel arcs between any two vertices or

loops of a vertex in G (if there are no parallel arcs then � = 1), then complement

G of G is the digraph which has the same set of vertices as G and for any ordered

pair (u; v) of vertices u and v of G (if loops are not allowed then u 6= v) from u to

v lead � � a arcs, where a is the number of arcs leading from u to v in G:

De�nition 1. Let B � f1; 0;�1gn n f(0; 0; : : :; 0)g: The generalized direct product

with basis B of digraphs G1; G2; : : : ; Gn is the digraph G = GDP (B;G1; G2; : : : ;-

Gn) whose vertex set is the Cartesian product of the vertex sets of digraphs G1;-

G2; : : : ; Gn: For two vertices say u = (u1; u2; : : : ; un) and v = (v1; v2; : : : ; vn) of

G construct all the possible arc selections of the following type. For each n�tuple
(�1; �2; : : : ; �n) 2 B; such that uk = vk holds whenever �k = 0; select an arc going

from ui to vi in Gi whenever �i = 1 and an arc going from ui to vi in Gi whenever

�i = �1: The number of arcs going from u to v in G is equal to the number of such

selections.

If B consists of n�tuples of symbols 1 and 0, only, the resulting operation

is called the non-complete extended p�sum (NEPS). The p�sum is obtained if B

consists of all the possible n�tuples with exactly p 10s: If p = n; the p�sum is

called the product. The 1�sum is also called the sum. The NEPS, basis of which

contains all the possible n�tuples, is called the strong product.

We shall investigate connectedness of the generalized direct product (GDP)

of strongly connected digraphs by using Theorems 0.4 and 0.5 from [2].

For that purpose we need the following results from [4] and [5].

Theorem 1. Let G be a regular digraph with p vertices, degree r; and maximum

number of parallel arcs between any two vertices or loops of a vertex equal to �

and let �1 = r; �2; � � � ; �p be the spectrum of G: The complement G of G has the

spectrum given by: �1 = �p� � � r; �2 = �� � �2; : : : ; �p = �� � �p; if loops are

not allowed, and �1 = � � p � r; �2 = ��2; : : : ; �p = ��p; if loops are allowed in

G (G):

The eigenvectors belonging to �i and �i are the same and the eigenvec-

tor belonging to the eigenvalue � distinct from r is orthogonal to the eigenvector

(1; 1; : : : ; 1) belonging to r:

Let Ai (Ai) denote the adjacency matrix of (complement Gi of) the digraph

Gi; A
[1]

i = Ai; A
[0]

i = I (of the same order), A
[�1]

i = Ai and let 
 denote the

Kronecker product of matrices.

Theorem 2. The generalized direct product with basis B of digraphs G1; G2; : : : ; Gn

has the adjacency matrix A given by

A =
X
�2B

A
[�1]
1


 A
[�2]
2


 � � � 
A[�n ]
n :

The following theorem is a slight generalization of Theorem 5 from [4]. Its

proof coincides with the proof of Theorem 2.23 in [2].
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Theorem 3. If, for i = 1; 2; : : : ; n; �iji; (�iji); ji = 1; 2; : : : ; pi; is the spectrum of

a digraph Gi (complement Gi of Gi; given by Theorem 1 in the case of regularity of

Gi) (pi being its number of vertices); then the spectrum of GDP(B;G1; G2; : : : ; Gn);

in which Gi is a regular digraph whenever there exists � 2 B such that �i = �1;
consists of all possible values �j1;j2;���;jn where

�j1;j2;���;jn =
X
�2B

�
[�1]

1j1
� �

[�2 ]

2j2
� � ��

[�n ]

njn
;

�
[1]

iji
= �iji ; �

[0]

iji
= 1; �

[�1]

iji
= �iji ; ji = 1; 2; : : : ; pi; i = 1; 2; � � �; n:

The eigenvector xj1;j2;:::;jn = x1j1
x2j2
� � �
xnjn belongs to the eigenvalue

�j1;j2;:::;jn ; where xiji is an eigenvector belonging to the eigenvalue �iji of Gi:

We shall consider the GDP, basis B of which has property (D): for each

j 2 f1; 2; : : :; ng the set f�j j � 2 Bg is not a subset of f0;�1g: This condition
implies that the GDP, e�ectively, depends on each Gi: However, this condition

does not represent an essential restriction in investigation of connectedness of a

GDP, because in the case f�jj � 2 Bg � f0;�1g for some j; we can replace Gj by

its complement Gj ; provided in each n�tuple � 2 B the j�th coordinate �1 is

replaced by 1 [4], while the case when all �j are equal to 0 is not interesting and

will be excluded from consideration.

Let h(G) = h be the greatest common divisor of the lengths of all the cycles

in a digraph G: The digraph G is called primitive if it is strongly connected and

h = 1 and imprimitive if it is strongly connected and h > 1: In the second case h is

called the index of imprimitivity (h is the index of imprimitivity of the adjacency

matrix of the digraph G as well ([1], p. 183)).

The following simple assertion [6] will be used many times in the sequel.

Lemma 1. If a regular, connected, imprimitive digraph, without multiple arcs, has

even number of vertices and degree equal to half of the number of vertices, then this

digraph is bicomplete.

Proof. Since the index of imprimitivity of a digraph divides all lengths of its cycles

it is only necessary to show that this digraph has a cycle of length two. If r is the

degree of this digraph then it has 2r2 arcs but in the case of absence of symmetric

arcs the maximumpossible number of arcs is
�
2r

2

�
= r(2r�1): Thus, the statement

follows.

Similar assertion holds also for digraphs containing multiple arcs.

It is noticed in [4] that a GDP of regular digraphs is a regular digraph and

that (weak) components of a regular digraph are its strong components too.

A maximal eigenvalue of a digraph G is an eigenvalue of G; modulus of which

is equal to the index of G: In investigating the connectedness of GDP, using spectral

techniques, we give rise naturally to the following question.

Question. Which connected, regular, imprimitive digraphs G have property (M):

There exists a maximal eigenvalue of G; di�erent from the index, such that by

Theorem 1 corresponding eigenvalue of G is maximal too ?
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The answer to this question is given by the following lemma.

Lemma 2. The property (M) have only regular, bicomplete digraphs and, in the

case when loops are not allowed, regular, bicomplete digraphs and the cycle of length

3, with the same multiplicity of all arcs (in both cases):

In the case of bicomplete digraphs the argument of the corresponding eigen-

value of G is equal to zero and in the case of the cycle of length 3 it is twice greater

than the argument of the corresponding eigenvalue of G:

Proof. The index �p � r � �l(G) of the complement G; of a regular digraph G

is corresponded to the index r of G; where � is the maximal number of parallel

arcs between any two vertices or loops of a vertex in G and l(G) = 1 if loops are

forbidden, and l(G) = 0 otherwise.

Let h be the index of imprimitivity of G: All eigenvalues of G; which have

modulus equal to r; can be written in the form rei
`
h
2�; ` = 0; 1; : : : ; h � 1 (by a

well-known theorem of Frobenius). The question is: when does to any eigenvalue

rei
`
h
2�; 1 � ` � h � 1; of a regular digraph G; correspond eigenvalue (�p � r �

�l(G))ei� of G; for any �: According to Theorem 1, the eigenvalue

��l(G)� rei
`
h
2� =

�
r2 +

�
2�r cos

`

h
2� + �2

�
l(G)

�1

2

ei�;

ofG; where � = arg
�
�� � l(G) � rei

`
h
2�
�
; is corresponded to the eigenvalue rei

`
h
2�

of G:

Consider, �rstly, the case when loops are forbidden. The following two cases

are occur: 1� �p � r � � =
�
r2 + 2�r cos `

h
2� + �2

� 1
2 = r � � and 2� �p � r �

� =
�
r2 + 2�r cos `

h
2� + �2

� 1
2 = r: The case

�
r2 + 2�r cos `

h
2� + �2

� 1
2 = r + � is

impossible, since ` > 0: It is easy to check that the cases (r2+2�r cos `
h
2�+�2)

1

2 =

r + k; k 2 Z; 0 < jkj < �; are also impossible. In order to see this note that G is

strongly connected and primitive if h(G) � 4.

In the case 1�; cos `
h
2� = �1 holds, which gives h = 2`; 2r = �p and

according to Lemma 1, G is bicomplete, each arc of which has the same multiplicity

� equal to �: In this case � = 0:

In the case 2�; cos `
h
2� = � �

2r
holds, which gives (due to the rationality of

the cosine of angles of the form `
h
2� and r � �) r = � and since 2r = �p�� we have

p = 3 and consequently G is isomorphic to ~C3; each arc of which has multiplicity

�: In this case � = 4�
3
if ` = 1 and � = 2�

3
if ` = 2:

If loops are allowed in G; G; the modulus of the corresponding eigenvalues of

G and G (di�erent from the indices) are the same, and arguments di�er by �; and

from r = �p � r, by Lemma 1, it follows that G is bicomplete, each arc of which

has multiplicity �; and � = `
h
2� + � = 0 (mod2�):

This completes the proof of the lemma.

De�nition 2. A subset fi1; i2; : : : ; isg of f1; 2; : : : ; ng is consistent with digraphs

G1; G2; : : : ; Gn with respect to the basis B if for each k 2 fi1; i2; : : : ; isg \ f�j9� 2
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B^�� = �1g; the digraph Gk is bicomplete or, in the case when loops are forbidden,

bicomplete or isomorphic to ~C3:

From our Theorem 3 and Theorem 0.5 in [2] the following assertion follows.

Theorem 4. If G1; G2; : : : ; Gn are strongly connected digraphs then, under condi-

tions of Theorem 3; the (weak) components of GDP (B;G1; : : : ; Gn) are its strong

components too.

De�nition 3. If integers x
(0)

1
; x

(0)

2
; : : : ; x

(0)

n ; x(0) satisfy the equation

(1)
x1

h1
+

x2

h2
+ � � �+

xn

hn
= x

on n + 1 variables in integers x1; x2; � � � ; xn; x where h1; h2; � � � ; hn; (n > 0) are

natural numbers, then the classes x1 = x
(0)

1
(modh1); x2 = x

(0)

2
(modh2); : : : ; xn =

x
(0)

n (modhn) are called a solution of equation (1):

It can be shown that equation (1) has exactly1
h1 � h2 � � �hn

l:c:m:(h1; h2; : : : ; hn)
solu-

tions.

For a digraph G let e(G) be de�ned as follows:

e(G) =

�
1; if loops are forbidden and G �= ~C3;

0; if G is a bicomplete digraph.

Theorem 5. Let GDP(B;G1; ; Gn) satisfy following conditions: (i) Basis B has

property (D); (ii) For i = 1; 2; : : : ; n; Gi is a strongly connected digraph with at least

two vertices; (iii) For i 2 K = fkj9� 2 B ^ �k = �1g � f1; 2; : : :; ng; Gi is a regu-

lar, non-complete digraph; (iv) For j 2 L � f1; 2; : : : ; ng; Gj is imprimitive with the

index of imprimitivity hj ; otherwise it is primitive. The GDP (B;G1; : : : ; Gn) is a

strongly connected digraph if and only if for every non-empty subset fj1; j2; : : : ; jsg
of L; which is consistent with the digraphs G1; G2; : : : ; Gn with respect to the basis

B and every choice of integers `j1 ; `j2 ; : : : ; `js; 1 � `jt � hjt � 1; t = 1; 2; : : : ; s;

there exists � 2 B such that

X
i2fj1;:::;jsg

�
1

2
(�i

2 + �i)
`i

hi
+

`i

3
e(Gi)(�i

2 � �i)

�

is not an integer.

Moreover, the number of strong components of GDP is equal to the number

of solutions xi; y� of the following system of equations

X
i2L

�
1

2
(�i

2 + �i)
xi

hi
+
xi

3
e(Gi)(�i

2 � �i)

�
= y� ; � 2 B;

satisfying condition: if for any i 2 L\K; Gi is not bicomplete or, in the case when

loops are forbidden, neither bicomplete nor isomorphic to ~C3; then xi = 0(modhi):

1l.c.m. denotes the lowest common multiple
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Proof. According to Theorem 0.4 from [2] a digraph G; with an adjacency matrix

A, is strongly connected if and only if its index r is a simple eigenvalue and if a

positive eigenvector belongs to r both in A and AT:

Let ri be the index of Gi (i = 1; 2; : : : ; n) and let xi (yi) be the positive

eigenvector belonging to ri in the adjacency matrix Ai (AT

i ) of Gi (theorem of

Frobenius). Then, from Theorem 3, it immediately follows that x1
x2
� � �
xn
(y1 
 y2 
 � � � 
 yn) is the positive eigenvector belonging to the index � in the

adjacency matrix A (AT ) of G = GDP (B;G1; : : : ; Gn) where

� =
X
�2B

r
[�1 ]

1
r
[�2]

2
� � �r[�n ]n ; r

[1]

i = ri; r
[0]

i = 1; r
[�1]

i = �ipi � ri � �i � l(Gi);

pi is the number of vertices, �i is the maximal number of parallel arcs between

any two vertices or loops of a vertex of Gi and l(Gi) have the same meaning as in

Lemma 2.

By the same theorem, if none of Gj; j 2 K; is complete, the index � of G can

be obtained only from those eigenvalues of the digraphs Gj (Gj), j = 1; 2; : : :; n;

which have a modulus equal to rj (�jpj�rj��j � l(Gj)). All these eigenvalues of Gj

can be written in the form rj exp
�
`j
hj
2�
�
, 0 � `j � hj � 1 (exp(t) = eti; i2 = �1)

(theorem of Frobenius). Therefore, by Theorem 3 we have

(2) � =
X
�2B

nY
i=1

�
1

2
(�i

2 + �i)ri exp

�
`i

hi
2�

�
+ (1� �i

2)

+
1

2
(�i

2 � �i)

�
sg (`i)�ipi � �i � l(Gi)� ri exp

�
`i

hi
2�

���
;

where sg(0) = 1 and sg(x) = 0 for x > 0. From (2) it follows that the index � is

a simple eigenvalue if for each choice of integers `i; 0 � `i � hi � 1; i 2 L with at

least one `i > 0; at least one summand in � is di�erent from

r
[�1]
1

r
[�2 ]
2

� � �r[�n ]n :

Let Nn = f1; 2; : : : ; ng: For any choice of integers `j1 ; `j2 ; : : : ; `js ; 1 � `jt �
hjt � 1; fj1; j2; : : : ; jsg � L and any � 2 B let N� = fj1; j2; : : : ; jsg \ fkj �k 6= 0g:
Then from (2) we have:

� =
X
�2B

� Y
i2NnnN�

r
[�i]

i

� Y
i2N�

�
1

2
(1 + �i)ri exp

� `i
hi
2�
�

+
1

2
(1� �i)

�
� �i � l(Gi) � ri exp

� `i
hi
2�
���!

;

or

(3) � =
X
�2B

� Y
i2NnnN�

r
[�i]

i

�� Y
i2N�

�
ri

2 +
1

2
(1� �i)�
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�
�
2ri�i cos

`i

hi
2� + �i

2

�
l(Gi)

� 1

2

exp
�1
2
(1 + �i)

`i

hi
2� +

1

2
(1� �i)�i

��
�
�i = arg

�
� �i � l(Gi)� ri exp

� `i
hi
2�
���

:

From (3) it follows that the index � of the GDP is a simple eigenvalue if

and only if for at least one � 2 B one of the following conditions holds: (a) there

exists i 2 N� such that �i = �1 and
�
ri
2 + (2ri�i cos

`i
hi
2� + �i

2) � l(Gi)
� 1

2

-

6= �ipi�ri��i � l(Gi) or (b) the argument of the operator exp, of the corresponding

summand in �; is di�erent from 2k�; k 2 Z:

By Lemma 2, we conclude that � is a simple eigenvalue whenever, in the

case (a) the digraph Gi is not bicomplete or, in the case when loops are forbidden,

neither bicomplete nor isomorphic to ~C3:

Using condition (b) and supposing that, in accordance with (a), for each

i 2 N� for which �i = �1; Gi is bicomplete or, in the case when loops are forbidden,

bicomplete or isomorphic to ~C3; we have conditionX
i2N�

�1
2
(1 + �i)

`i

hi
2� +

1

2
(1� �i)

`i

3
4�e(Gi)

�
6= 2k�;

from which the �rst part of the Theorem follows.

According to Theorem 0.5 from [2] the number of strong components of

the GDP is equal to the multiplicity of its index �: For any choice of integers

`j1 ; `j2 ; : : : ; `js; fj1; j2; : : : ; jsg � L; 1 � `jt � hjt � 1; t = 1; 2; : : :; s; let Gjt is

bicomplete or, in the case when loops are forbidden, bicomplete or isomorphic to
~C3 whenever jt 2 K \L holds. Then (3), according to Lemma 2, can be written in

the form:

(4) � =
X
�2B

r
[�1]
1

r
[�2 ]
2

� � �r[�n ]n �

� exp

� X
i2fj1;:::;jsg

�1
2
(�i

2 + �i)
`i

hi
2� +

1

2
(�i

2 � �i)
`i

3
4�e(Gi)

��
:

Now (4) gives � if the argument of the operator exp, in all summands, is equal to

2y��; y� 2 Z:

This completes the proof of the theorem.

The following theorem is a specialization of the preceding one to undirected

graphs. Preliminary we introduce the following function.

(5) f(x1; x2; : : : ; xn) =
X
�2B

x
[�1]
1

x
[�2]
2

� � �x[�n]n ; x
[1]

i = xi; x
[0]

i = 1; x
[�1]

i = xi
2:

If (see [2] for de�nition) the function (5) is even (odd) with respect to a

non-empty subset fxi1; xi2 ; : : : ; xisg of variables fx1; x2; : : : ; xng (fi1; i2; : : : ; isg �
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f1; 2; : : :; ng) we will say also that this function is even (odd) with respect to the

subset fi1; i2; : : : ; isg of f1; 2; : : : ; ng:

Theorem 6. Let GDP (B;G1; : : : ; Gn) satisfy following conditions: (i) Basis B

has property (D), (ii) For i = 1; 2; : : : ; n; Gi is an undirected connected graph with

at least two vertices; (iii) For i 2 K = fkj9� 2 B ^ �k = �1g � f1; 2; : : :; ng; Gi

is a regular non-complete graph; (iv) For j 2 L � f1; 2; : : : ; ng; Gj is a bipartite

graph, otherwise it is primitive. The GDP(B;G1; : : : ; Gn) is a connected graph if

and only if the function (5) is never even with respect to a non-empty subset of L;

which is consistent with the graphs G1; G2; : : : ; Gn with respect to the basis B:

Moreover, the number of components of GDP(B;G1; : : : ; Gn) is greater by one

than the number of non-empty subsets of L; which are consistent with the graphs

G1; G2; : : : ; Gn with respect to the basis B; with respect to which the function (5) is

even.

Example 1. The following system of equations

x1

h1
+

x2

h2
= x&

x1

h1
+

2x2

h2
e(G2) = y&

2x1

h1
e(G1) +

x2

h2
= z:

or, in the case of undirected graphs, the function

f(x1; x2) = x1x2 + x1
2x2 + x1x2

2

is corresponded to the generalized direct product with basis B = f(1; 1); (1;�1);
(�1; 1)g of regular, connected, non-complete digraphs G1 and G2 each containing

at least two vertices. There are no solutions of this system of equations di�erent

from zero, which satisfy conditions of Theorem 5, and therefore, the considered

product is connected. In the case when any factor is complete, it is easy to see that

this product is also connected.

Product in this example is corresponded to the Boolean function disjunction

of graphs (see [2], p. 207).

Example 2. Generalized direct product with basis B = f(1; 1); (�1;�1)g of regu-
lar, connected, non-complete digraphs G1; G2; each containing at least two vertices,

has two components if digraphs G1 and G2 are bicomplete, three components (each

isomorphic to C3) if these two digraphs are isomorphic to ~C3 and loops are not al-

lowed. In other cases this product is connected. If any of the factors is complete

this product is reduced to the ordinary product of digraphs and is a connected

digraph.

Example 3. Generalized direct product with basis B = f(1;�1); (�1; 1)g of regu-
lar, connected, non-complete digraphs G1; G2; each containing at least two vertices

is always a connected digraph except in the case that both of the factors are isomor-

phic to ~C3 and loops are not allowed. In this case this GDP has three components

(each isomorphic to C3). If one of the factors is complete this product is connected

if and only if the complement of the other factor is connected.

Results related to the connectedness of the NEPS and its special cases given

in [3] and [5] follow now immediately from Theorem 5.
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