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In the present paper the authors propose an algorithmic procedure di�erent
from the known algorithms [1,2] of searching for the Liouvillian solutions of
linear ordinary di�erential equations (LODE) of the second order. This pro-
cedure is based upon the reducibility of LODE of the second order to the

equation with constant coe�cients by Kummer-Liouville transformation [3].
It is applicable not only to the equations with rational coe�cients, but also to
the equations with arbitrary functional coe�cients and parameters.
Short description of the package structure is given in [4,5]. However in this
paper we do not consider, in general, the equations having algebraic and special

functions as the solutions, as well as the equations having solutions built by
Euler-Darboux-Imshenetsky transformation.

The package testing was carried out using treats [6,7,8]

1. INTRODUCTION

The construction of algorithms for �nding formal solutions for some classes
of equations is the main purpose of any constructive theory of ordinary di�erential
equations theory. Explicit formulas are very important and include in themselves
all the available information. It is also necessary to have them to develop our
mathematical and scienti�cal intuition and to compare di�erent theories including
the bounds of their applicability.

Euler, Liouville, Kummer, Jacobi and other mathematicians discov-
ered that the basic method of integration and investigation of di�erential equations
implies convenient changes of variables which reduce the original equations to a
simpler form. However, they didn't o�er the algorithms for �nding this trans-
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formations and, as a result, the search for suitable substitutions had an heuristic
character.

On the other hand, closed relations between linear ODE and algebraic equa-
tions have been known for a long time and they have resulted in method of factoriza-
tion of di�erential operators. Here many results had a non-constructive character,
too.

One of the authors developed in [3] the e�ective method of transformation of
di�erential equations in which both the change of variables and the factorization
of di�erential operators were used.

There exist di�erent approaches to receiving the Liouvillian solutions of ODE,
i.e. those that may be represented in a �nite form using elementary, algebraic
functions and quadratures.

An interesting though not complete, review of various methods of obtaining
the Liouvillian and other formal solutions of ODE may be found in [9].

Modern computer algebra systems are becoming the powerful means of PC
implementation of the exact methods of ODE investigation and integration. As
a result, many users are able now to use in practice those methods that formerly
were available only for specialists.

In this paper we propose our algorithm for �nding the general solutions of
nonhomogeneous second order LODE

Ly � a2(x) y
00 + a1(x) y

0 + a0(x) y = f(x);

where coe�cients a2; a1; a0 belong to some di�erential �eld K and they are ar-
bitrary di�erentiable functions, possibly, containing parameters. The heart of an
algorithm is the search for variable change that reduces the corresponding homo-
geneous equation Ly = 0 to one with constant coe�cients.

Algorithm is implemented in computer algebra system REDUCE [10].

2. METHOD

2.1. SEARCH FOR THE KUMMER-LIOUVILLE

TRANSFORMATION

Let the equation

(1) y00 + a1(x) y
0 + a0(x) y = 0; a1 2 C1(I); a0 2 C(I);

where I = fxja < x < bg be given. Here for simplicity we assumed a2 = 1. Let us
apply here the Kummer-Liouville (KL) transformation, i.e. the variable change:

(2) y = v(x)z(t); dt = u(x)dx; u; v 2 C
2(I); uv 6= 0; 8x 2 I:

Due to the St�ackel-Lie theorem (2) is the most general transformation that
keeps the order and linearity of an equation (1). It is the basic part of the Kummer
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problem (see [11]) of reduction of (1) to the equation of a form

(3) z00(t) + b1(t) z
0(t) + b0(t) z(t) = 0; b1 2 C1(J); b0 2 C(J):

where J = ftjc < t < dg.
The Kummer problem is always solvable [12] and, therefore, there always

exists the KL-transformation that reduces (1) to (3). However, the problem of
reduction of (1) to the equation with constant coe�cients

(4) z00(t) + b1 z(t) + b0 z(t) = 0; b1; b0 = const;

is of the most essential interest.

The KL-transformation may be found using

Lemma 1. The equation (1) may be reduced to (4) by the KL-transformation, for

which the kernel u(x) satis�es the second order Kummer-Schwarz equation

(5)
1

2

u00

u
� 3

4

�
u0

u

�2

� 1

4
�u2 = A0(x);

where

A0(x) = a0 �
1

4
a1

2 � 1

2
a0
1

is a semi-invariant of (1); � = b1
2 � 4b0 is a discriminant of a characteristic

equation

(6) r2 + b1r + b0 = 0:

Then, the multiplier v(x) of KL-transformation satis�es the explicit equation

v(x) = juj�1=2 exp
�
� 1

2

Z
a1 dx

�
exp

�1
2
b1

Z
u dx

�

and, moreover, v(x) and u(x) are related by a di�erential equation

(7) v00 + a1(x) v
0 + a0(x) v � b0u

2v = 0:

Lemma 1 allows to �nd a constructive approach to �nding u(x) and, con-
sequently, the Kummer{Liouville transformation (for more details see section
3).

Let us consider the equation

(8) y1
00 + a1 y1

0 + a01 y1 = 0; a01 = a0(x)� b0 u(x)
2

resulted from (7) after the change v ! y1. This equation and (1) have the same
kernel u(x) of the KL-transformation. Since the coe�cient a0(x) due to the formula

a0(x) = a01(x) + b0 u(x)
2
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contains u(x)2 as an additive part (up to the multiplicative constant b0 6= 0 ), then
it is reasonable to choose variants of u(x) among the expressions a0(x) or A0(x) or
their additive parts.

Then the function w(x) = u(x)2 must satisfy the equation

1

4

w00

w
� 5

16

�
w0

w

�2

� 1

4
�w = A0:

Remark: In order to apply these statements, at least one of the expressions � or
b0 should not be zero.

2.2. FACTORIZATION

Let us say that the equation (1) admits factorization if its di�erential operator

L = D2 + a1D + a0; D = d=dx

may be represented as a product of �rst order operators

(9) L = (D � �2)(D � �1); �1 = �1(x); �2 = �2(x)

Here the di�erential analog of Vi�ete formulas

(10) a1 = �(�1 + �2); a0 = �1�2 � a0
1

remains valid.

Due to the G.Mammana's theorem [13], (1) always admits factorization.

Lemma 2. The equation (1) may be reduced to (4) by the transformation (2) and

admits factorization

L =

�
D � v0

v
� u0

u
� r2u

��
D � v0

v
� r1u

�
y = 0;

where r1; r2 are roots of the characteristic equation (7):

Lemma 3. Zeros (roots) of factorization may be represented in the form

�1 = �1

2

u0

u
� 1

2
a1 +

p
�

2
u; �2 =

1

2

u0

u
� 1

2
a1 �

p
�

2
u:

This formula connects \zeros" of factorization with Kummer-Liouville

transformation.

Let us now �nd the feedback of KL-transformation with \zeros" of factoriza-
tion. Using the arbitrariness of determining the characteristic roots r1; r2; we may
require r1 = r2 = 0: Then the above formula takes a form

�1 =
v0

v
; �2 =

v0

v
+
u0

u
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from where

(11) v = e

R
a1dx; u = e

R
(�2��1) dx:

So, we may formulate

Lemma 4. The equation (1) by transformation

y = e

R
�1 dx; dt = e

R
(�2��1) dx dx

may be reduced to the equation with constant coe�cients

z00(t) = 0:

Since in this case the KL-transformation is represented using the \roots" of
factorization, an elementary procedure for �nding factorization may be speci�ed.

Let us consider the Kummer-Schwarz equation (5) that due to (10) will
take a form

A0 = �1

4
(�2 � �1)

2 � 1

2
(�2 � �1)

0

from where
� = �2 � �1:

So, we may �nd � as � = �2pw, where w is an a additive part of semi-
invariant A0.

2.3. FUNDAMENTAL SYSTEM OF SOLUTIONS OF LODE

Case 1: Equation (1) admits the factorization (11):

Lemma 5. Equation (1) has the following fundamental system of solutions (FSS):

y1;2 = u�1=2 exp

�
�1

2

Z
a1 dx

�
exp

 
�
p
�

2

Z
u dx

!
; � 6= 0;

y1 = u�1=2 exp

�
�1

2

Z
a1 dx

�
; y2 = y1

Z
u dx; � = 0:

Case 2: b1 = b0 = 0:

Lemma 6. If the factorization (14) is known, then FSS is:

y1 = e

R
�1 dx; y2 = y1

Z
e

R
(�2��1) dx dx:
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2.4. PARTIAL SOLUTION

Let the nonhomogeneous equation

y00 + a1 y
0 + a0 y = f(x)

be given. If the FSS fy1; y2g of correspondent equation (1) is known, then the
partial solution y� for Lemma 6 has the form

y� = �y1
Z

e

R
a1 dx y2f dx+ y2

Z
e

R
a1 dx y1f dx

while for Lemma 5

y� =
1

2
p�b0

�
y1

Z
e

R
a1 dx y2f dx� y2

Z
e

R
a1 dx y1f dx

�
; b0 6= 0:

2.5. SEMI-INVARIANTS AND SPECIAL CASES OF

KUMMER{LIOUVILE TRANSFORMATION

2.5.1. Semi-invariant J0 (invariant by the transformation of dependent

variable).

As mentioned above, J0 has the form

J0 = a0 �
1

4
a1

2 � 1

2
a0
1:

If J0 =const, then the KL-transformation will take the form

y = exp

�
�1

2

Z
a1 dx

�
z; dt = dx:

Factorization of operator L in this case will become commutative:

L =

�
D +

1

2
a1 +

p
b0

��
D +

1

2
a1 �

p
b0

�
:

2.5.2. Semi-invariant J1 (invariant by the transformation of

independent variable) [14].

(12) J1 = a0e
2

R
a1 dx

�
b1

Z
e
�

R
a1 dx dx+ c

�2

:
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If J1 =const, then the KL-transformation will take the form

y = z; dt = � e
�

R
a1 dx

b1
R
e
�

R
a1 dx dx+ c

dx:

We may determine whether J1 is a constant or not, using the formula

a1p
ja0j

+
1

2

a0
0

a0
p
ja0j

= b1 = const:

2.6. EQUATIONS SOLVABLE ALGEBRAICALLY

2.6.1. Exponential solutions

Let the equation Ly = 0 have an exponential solution y = e�x, where
� =const. Then the characteristic equation

r2 + a1(x) r + a0(x) = 0

has among its roots r1; r2 not a function but a number �:

r1;2 = � a1

2
�
r

a12

4
� a0

Factorization L takes the form:

L = (D + a1 + �)(D � �):

2.6.2. Adjoint equations

By de�nition, the adjoint for

Ly = a2y
00 + a1y

0 + a0y = a2(D � �2)(D � �1)y = 0

equation is an equation

L�y � a2 y
00 + (2a0

2
� a1) y

0 + (a0 � a0
1
+ a00

2
) y = 0

it admits factorization

L� = (D + �1)(a2D + a02 + a2�2) = a2

�
D +

a02
a2

+ �1

��
D +

a02
a2

+ �2

�
:
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Let us consider the characteristic equation for an adjoint one:

a2 r
2 + (2a02 � a1)r + a0 � a01 + a002 = 0:

If one of its roots is a number �, then the factorization L� takes the form:

L� = a2

�
D +

a02
a2

+ �1

�
(D � �):

Simultaneously, the factorization L is of the form

L = a2

�
D +

a0
2

a2
+ �

��
D � a0

2

a2
� �1

�
:

2.6.3. Exact equation

If � = 0, then we have an exact equation, for which the factorization L has a
form

L = D(a2D � �1a2) = a2

�
D +

a02
a2

�
(D � �1):

3. FOUNDATIONS OF AN ALGORITHM

3.1. RELATED SECOND ORDER LINEAR DIFFERENTIAL

EQUATIONS

The search algorithm for the Liouvillian solutions is concerned with a proce-
dure of \generation" of integrable equations [15]. We shall call related equations

the following two second order equations: equation (1) and equation (8), which are
connected by a Kummer-Liouville transformation (see below).

Lemma 5. Kummer-Schwarz equation (5) has the following general solution de-

pending on � :

u1(x) = F (�1Y2 + �2Y1)
�1(�2Y2 + �2Y1)

�1; � = (�1�2 � �2�1)
2 < 0

u2(x) = F (AY2
2 + BY1Y2 +CY1

2)�1; � = B2 � 4AC > 0

u3(x) = F (�Y2 + �Y1)
�2; � = 0

Let us also point out here some special cases:

u4(x) = F (�Y2 + �Y1)
�1Y �1

1
; or = F (�Y2 + �Y1)

�1Y �1

2
; � = �2;

u5(x) = FY �2

1
; or = FY �2

2
; or = F (Y1Y2)

�1; � = 0

Here

F = e
�

R
a1 dx
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and Y1; Y2 form the fundamental system of solutions of an equation (1).

Below for the description of a set of related integrable equations let us consider
the equation of a form:

y00 + a(x) y = 0:

Theorem. This equation generates the sequence

y00k+1 + ak+1 yk+1 = 0;

ak+1 = a�
k+1X
s=0

b0(s)us
2;

b0(s) = const; ak+1 = ak � b0(k+1)u
2

k+1; b0(k+1) 6= 0;

where u(x) satis�es the following consequence of equations (KSH-2):

1

2

u00
(s)

u(s)
� 3

4

 
u0
(s)

u(s)

!2

� 1

4
�(s)u

2

(s) = A(s�1);

�(s) = b 2

1(s) � 4b0(s)

is a determinant of a characteristic equation

rs
2 � b1(s) rs + b0(s) = 0:

Then the linear independent solutions y(1;2)k+1 have a form:

y(1;2)k+1 = ju(k + 1)j�1=2 exp

�
�(1=2)b1(k+1)

Z
u(k+1) dx

�
; b1(k+1) 6= 0;

y1(k+1) = ju(k + 1)j�1=2; y2(k+1) = ju(k+1)j�1=2

Z
u(k+1) dx; b1(k+1) = 0:

4. IMPLEMENTATION

The REDUCE program SOLDE which implements the algorithm described
above, has the following main characteristics:

INPUT: a2,a1,a0,f %coefficients of given equation

OUTPUT: u,v, %variable change

b1,b0, %coefficients of reduced equation

alpha1,alpha2, %coefficients of factorization

y1,y2, %FSS

yp %partial solution for nonhomogeneous ODE

The computer program SOLDE written in the system of computer algebra
system REDUCE, involves a detailed consideration of some important procedures
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which will be mentioned in this section. From the factorization of di�erential
operator we deduce that in case a2(x) 6=const the square root of a2(x) and one
of the factors of a2(x) may be tested as possible variants of 1=u(x).

Program SOLDE was tested on hundreds of equations [6,7,8] and it proved
successful in 75% . Failure in the rest 25% is caused by three reasons: 1) Though
Kummer-Liouville transformation has already been included into the program,
another important transformation, of Euler-Darboux-Imshenetsky, has not
been included into the program yet; 2) The algorithm can fail to work when
b1 = b0 = 0; 3) The given version of the program does not apply in general to the
equations having algebraic and special functions as their solutions.

To illustrate the current possibilities of this program, let us name the sorts
of equations from the demonstration �le: Equations with constant coe�cients, Eu-
ler's equations, equations with exponential, algebraic coe�cients, trigonometrical,
hyperbolic functions, with arbitrary functions, mixed and rational coe�cients.

*** I.Equations with constant coefficients ***

Y''+ A*Y'+ B*Y = F(X)

Y''+ A*Y'+ A*A/4*Y = F(X)

*** II.Euler's equations ***

Y'' + A/X * Y' + B/(X*X) * Y = F(X)/(X*X)

*** III.Equations of a form : ***

Y'' + A1(x) * Y' = F(X)

*** IY.Equations with exponential coefficients ***

Y''+ A*Y'+ B*E**(2*A*X) * Y = F(X)

*** Y.Equations with trigonometrical functions ***

Y''+ 2*A*COT(A*X) * Y'+ (B*B-A*A) * Y = 0

Y''+ (M*M + A/SIN(2*M*X)**2) * Y = 0

*** YI.Equations with hyperbolic functions ***

Y''+ 2*TANH(X) * Y' + B*Y = 0

Y''+ (-M*M + A/(SINH(M*X)**4)) * Y = 0

*** YII.Equations with algebraic coefficients ***

Y'' + 8*A/(5*(A*X+B))*Y'+C*(A*X+B)**

(1/5)/(5*(A*X+B))*Y = 0

*** YIII.Equations with mixed coefficients ***

Y'' + 2*A/X*Y' +((B*B*E**(2*C*X)-1/4)*C*C+

A*(A-1)/(X*X)) * Y = 0

Y'' + (1/(4*X*X) + 1/(X*X)/(P*LOG(X)+Q)**4))

* Y = 0

*** IX.Equations with arbitrary functions ***

Y'' + 2*F(X)*Y' + (F(X)*F(X)+F'(X)+G''(X)/2/G(X)-

3/4*G'(X)*G'(X)/G(X)*G(X)-A*G(X)*G(X))*Y=0

*** X.Equations with rational coefficients ***

Y'' + D/(A*X*X+B*X+C)**2 * Y = 0

Y''+(-M*(M+1)/(X*X) +(1/(-P/(2*M+1)*X**(-M)+

Q*X**(M+1))**4)*Y=0
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High e�ciency of this implementation is caused by the fact that entire pack-
age was developed by enlarging the procedure SOLDE which allows the user to
investigate his ODE from di�erent points of view, and even if the program itself
doesn't give an answer, it often helps the user to �nd the approaches to the solution
of his equation making his operations more e�ective and faster. It also helps him
test his propositions. Thus,each ODE may be investigated during the whole session
by the following procedures:

SOLDE(a2,a1,a0,f) solve the equation and display SUMMARY;
automatically put the new equation

VERFAC(alpha1) verify the given factorization, and
if it is correct, display SUMMARY;

VERSOL(y1) similar to VERFAC - for solution
VERTRANS(u,v) - " - - for transformation
PUTEQ(a2,a1,a0,f,J0) put the new equation without its

solving by the procedure SOLDE; normally
you would enter J0=0 and then semi-invariant
would be computed by program; if you however
aren't satis�ed with its value,
you enter the value yourself.

NORM(W) normalize W, i.e. delete constant
factor

SINV() display the meanings of semi-invariants
SUMMARY() display all the available information on the

current equation,including the equation itself
HELP() display brief
INFO() and complete information on the package

Example of this program in action is given below:

***************************************************************

* SOLVER OF LODE a2(x)*Y''+ a1(x)Y'+ a0(x)Y = f(x) *

* (C) L.M.Berkovich & F.L.Berkovich, 1992 *

* Samara Computer Algebra Group *

* Samara State University, Samara, RUSSIA *

* INPUT: solde(a2,a1,a0,f); don't use E,I,T *

* For full information please, enter INFO(); *
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***************************************************************

solde(x^2,0,-a*x+3/16,0);

*Summary of the operations*

***************************************************************

2 16*A*X - 3

*The equation was: (X )*y''+ (0)*y'+ ( - ------------)*y = 0

16

16*A*X - 3

*The semi-invariant by dependent variable: J0= - ------------

2

16*X

*The exponential solution doesn't exist

2 16*A*X - 35

*The adjoint equation: X *y'' + (4*X)*y' + ( - -----------)*y=0

16

*The adjoint equation has not exponential solution

1/4 1

*The transformation: y = (X )*z, dt = (---------) dx

SQRT(X)

* leads to z''(t)+(0)*z'(t)+ ( - A)*z(t) = 0

*The factorization:

4*SQRT(A)*X + SQRT(X) 4*SQRT(A)*X + SQRT(X)

*L = (D - (- ---------------------))(D - (---------------------))

4*SQRT(X)*X 4*SQRT(X)*X

*Fundamental system of solutions of Ly=0:

1/4

1/4 2*SQRT(X)*SQRT(A) X

Y1= X *E Y2=--------------------

2*SQRT(X)*SQRT(A)

E

**************************************************************
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Special case of this equation with a=1 was solved by Kova�ci�c [1] in a di�erent
way.

The Kamke's collection of integrable equations was essentially extended by
D. S. Mitrinovi�c [8] (see also the papers of di�erent authors published in [16]).
The previous version of the program is described in [17]. Semi-invariant with
respect to the transformation of independent variable (12) was considered by T.

Pejovi�c [14].

The program version 1.0 was demonstrated at the IV International Confer-
ence on Computer Algebra in the Physical Research, Dubna, USSR, May 22{26,
1990. Description of the algorithm was published in [17-19]. The version 1.1 (L.
M. Berkovich and M. L. Nechaevsky) which is an improvement of 1.0 was
demonstrated on ISSAC'91, Bonn (unpublished). The given version provides a
signi�cant extension of the possibilities of the previous ones.

Acknowledgement. The authors are grateful to Dr. V .T. Markov and to Mrs
L. A. Kozhevnikova for their help in preparing the paper for publication.
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