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ON SOME REFINEMENTS
OF HADAMARD’S INEQUALITIES
AND APPLICATIONS

Sever S. Dragomir, Dragoljub M. Milosevi¢, Jozsef Sandor

Some new refinements of Hadamard’s inequalities and applications are given.

In the paper [4] S. S. DRAGOMIR introduced the following mapping associ-
ated to HADAMARD’s inequalities:

b
H:[0,1]=>R, H() ::ﬁ/f(tm—i—(l—t)a;b) de,

where f: I C R — R is a convex mapping on I, a, b € I with a < b and he
pointed out the following fundamental properties of this function. Namely, it was
proved that:

(i)  H is convex and monotonously increasing on [0, 1]

(i) f(“;b) < H(t

for all t € [0, 1].

In this paper we shall establish other facts connected to HADAMARD’s result.
Theorem 1. If f and H are as above, then:

(i) The following inequalitieS'

and

(1) () <5 +/ Fla)dr < /1H<t> dt
3a+b)/4 0
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b
1 a+b 1
§§(f< 7 )-i-m/f(l‘)dl‘)
hold, ’

(i1) If f is differentiable on I then one has the inequalities:

2 osbia/fumt—mwgu—w(f“);f“)—bia/ﬂm

for allt €]0,1].
Proof. (i) H being convex on [0, 1], HADAMARD’s inequalities yield

L) (3) < [z Mo

a

which proves the statement.
(ii) Since f is convex on [a, b], then

a+b a+b

Fera-0" ) o> -0

—2) /'e)
for all t € (0,1) and = € (a,b). Integrating on [a, b], we derive

b

H(t)—bia/bf(x)dx> 1_t/<a—2|_b—x)f’(x)dx, te0,1].

—b—a

a

Since a simple computation shows

/b(a";b—w)f'<x>dx:/bf<x>dx_<b_a)w’

a

the inequality (2) is thus proven.
On the other hand, we have:

F(SE) 1@ 2 5@ g () -0 > S0
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which gives, by addition:

atby fla)+f()  (f'(b) = f(a))(a —b)
(o51) St s

b
Since H(t) > f % for all ¢ € [0, 1], the above inequality yields that (3)
1s valid and the proof 1s finished.

Now, we shall introduce another mapping which is in connection with H and
also with HADAMARD’s result.

Let f: I CR — R be a convex function and a,b € I with a < b. Define the
mapping:

G015 R, G) = (f (ta+(1_t)“T+b) v f ((1—t)aT+b—|—tb)).

The following theorem contains some remarkable properties on this mapping.
Theorem 2. Let f and G be as above. Then:
(1) G is conver and monotonously increasing on [0, 1];

(il) We have:

. _ _ a+b
(1) af G0 =G(0) =1 ( ! )
and
6) i) = (1) = L0,

(iii) For all t € [0, 1] the following inequality is valid:
(6) H(t) < G(t);

(iv) One has the inequalities:
(a43b)/4

o T e () (22)

(3a+b)/4

(v) If f is differentiable on I, then:

a+b
2

(8) 0§H(t)—f< ) <G@)—H() for all t € [0,1].
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Proof. (i) Let o, # > 0 with e+ 5 =1 and ¢, t2 € [0, 1]. Therefore

Glaty + Bts) = %( tra+(1—t1) ;b)+5(t2a+(1_t2)“;b))
(a(0- ) 5+ 00) +5((1- 1) 5 +128))
< %(a Fltra+( 1—t1)a;b)+f((1—t1)a;b+t1b))

# o(sisnt (-0 ) (0 s )
= aG(t1) + G (t2),

+
S~y

which shows the convexity of G.
Now, since G is convex on [0, 1], then for all ¢1,%2 € (0,1) with t2 > t; we
have:

(6(12) =Gl /(02 = 1) > Glef1r)

- % (f/+ ((1—t1)a;b+t1b) v <t1a+(1—t1)“;b)) (b;a),

where f (xo) denotes the right derivative of f in the point xo.

By the convexity of f one gets:

a+b a+b

Iy ((1 —11) +t1b) > fi <t1a+ (1—11) ) , t1 €(0,1),

which shows that G is monotonously increasing on (0, 1) and (see (ii)) also in [0, 1].

(ii) f being convex on [a, b], we have:

o213 et n)) ()

which implies (4).

On the other hand, we also have:

(1@ + =07 (S5 )+ a-0r (252 + )

= tf(a);f(b)+(1_t)f<a—2|—b)

for all ¢ in [0, 1], which implies that

G(1)

IA
N | —

i.e., the statement (5).
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(iii) Let us consider the mapping g : [a,b] = R, g(z) = f (tx +(1—1%) a‘zi'b) .
Clearly, g is convex on [a,b] and by HADAMARD’s inequality one has:

for all t € [0, 1].

(iv) Since f is convex on [(3a + b)/4, (a + 3b)/4], HADAMARD’s inequalities
show the first part of (7). The same inequality applied for the convex mapping G
yields the second part of (7) and we omit the details.

(v) f being differentiable convex on [a, b], we have:

f(a—QI-b) _f<m+(1—t)“T+b) Zt<a—2|—b—x)f’ (tx—i—(l—t)a;b)

for al t € (0,1) and z € (a,b). Integrating this inequality over  on [a, b] one gets:

(GO (G

a

Since
(S -e) (e u -0 =m0 -0, teno,

(8) is proven.

Now, we will consider another mapping associated to HADAMARD’s inequality
given by:

2@17_@) [ H(ta+ =02+ 51 = o +1)) d

a

L:[0,1]=R, L{t) :=

where f : ICR—=Rand a,be ]l (a<b).
The following theorem also holds

Theorem 3. Let f: I CR — R be a convexr mapping on I and a,b are as above.
Then

(i) L is conver on [0, 1];
(i1) We have the inequalities:
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for all t € [0,1] and

(10) sup (1) = L FIO)
te[0,1] 2
(iii) One has the inequalities:
(11) H(l—1) < L{t) and X ”f(l =9

for allt €]0,1].
Proof. (i) is obvious by the convexity of f (see e.g. [4]) and we shall omit the
details.

(ii) By JENSEN’s integral inequality one has:

BT P HM))
%(f(ta+(1a—t)a—2|_b)+f<tb+ 1—1) a;b))

By the convexity of f one has:

L(t) (L= 00 ) + 17(@) + (1= 07 () + 17(0) ) e

IA
[\
—
>~
||
=]
Nons?
o
\..@

for all t € [0, 1].
The last part of (9) is obvious.

The bound (10) follows from (9).
By the convexity of f one has:

L) 1 /f(ta—l—(l—t)x—l—(l—t)x—l—tb)dx

Y

2

bia/bf((1—t)l‘+t~aTM)dx:H(1_t)

a

for all t € [0, 1] and the first part of (11) is proved. For the second part one has:

L) > H(1—1) and L(t)>G(t) > H()
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for all t € [0, 1].
Applications: 1. Let p > 1 and 0 < @ < b. Then one has the inequalities:

Vs <f>pfl>_<5p—+;> - t<p+1;<b—a> ( (a;b ! (b;a))w

(e (55) ) comn (- )

s (530 () - (3 (2) )
< % ((ta+(1—t)a—2|—b)p+ ((1_t)aTH+tb)”)

for all t € (0, 1].

The proof follows by the inequalities (2) and (6) applied to the convex map-
ping f :[0,00) = [0,00), f(z) =P (p>1).

2. Let 0 < a < b. Then one has:

— atb 4 4 (b—a —
0<1nb lna_ 1 ln( = + <E>)§(1—t)<a+b—lnb lna)

and

= b—a t(b—a) azﬂ—t(bz‘l) 2ab b—a

and

a+b

1, ath 41 (252) 1
th—a) atb ¢ (b=a) | =2 (ta+ (1—)%E2) ((1— )%k 1 1)

I [ro

for all t € (0, 1].

The proof is obvious from (2) and (6) for the mapping f : (0,00) — (0, 00),
flx) :=1/x.
3. Let p> 1 and 0 < a < b. Then one has the inequalities:

% ((ta—l— (1 _t)“T*b)p + ((1 _t)“T*b —I—tb)p)

1
>~ m(bp+l =+ (ta + (1 —t)b)p+1 _ ((1 —t)a —|—tb)p+1 _ ap+1)
1-t¢ bp+1_ap+1+ al + b aP 4P
T b-a p+1 2 = 2

for all t € [0, 1).
The proof is obvious by the inequality (9) for f(z) = «? (p > 1).
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4. Let 0 < a < b. Then one has:

atb - 1 | (b(ta—i—(l—t)b))
(ta+ (1—0)=0) (1— 1)L +1b) — 20— a) (L —t)  \a((I—t)a+tb)
S ;—;;(lnb_h“‘) e a2:bb = GQbe

for all t € [0, 1).

The proof is obvious by (9) for f(z) = 1/z, = > 0.

For other inequalities connected to HADAMARD’s result we refer to [1—6]
where further references are given.
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