Univ. Beograd. Publ. Elektrotehn. Fak.

ON SOME REFINEMENTS OF HADAMARD'S INEQUALITIES AND APPLICATIONS

Sever S. Dragomir, Dragoljub M. Milošević, József Sándor

Some new refinements of Hadamard's inequalities and applications are given.

In the paper [4] S. S. Dragomir introduced the following mapping associated to HadamarD's inequalities:

$$
H:[0,1] \rightarrow \mathbf{R}, \quad H(t):=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) \mathrm{d} x
$$

where $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ is a convex mapping on $I, a, b \in I$ with $a<b$ and he pointed out the following fundamental properties of this function. Namely, it was proved that:
(i) H is convex and monotonously increasing on [0, 1]
and
(ii) $f\left(\frac{a+b}{2}\right) \leq H(t) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$, for all $t \in[0,1]$.

In this paper we shall establish other facts connected to Hadamard's result. Theorem 1. If f and H are as above, then:
(i) The following inequalities:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{2}{b-a} \int_{(3 a+b) / 4}^{(a+3 b) / 4} f(x) \mathrm{d} x \leq \int_{0}^{1} H(t) \mathrm{d} t
$$

[^0]$$
\leq \frac{1}{2}\left(f\left(\frac{a+b}{2}\right)+\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x\right)
$$
hold;
(ii) If f is differentiable on I then one has the inequalities:
\[

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t-H(t) \leq(1-t)\left(\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x\right) \tag{2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2}-H(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \tag{3}
\end{equation*}
$$

for all $t \in[0,1]$.
Proof. (i) H being convex on [0, 1], Hadamard's inequalities yield

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f\left(\frac{2 x+a+b}{4}\right) \mathrm{d} x & =H\left(\frac{1}{2}\right) \leq \int_{0}^{1} H(t) \mathrm{d} t \leq \frac{H(0)+H(1)}{2} \\
& =\frac{1}{2}\left(f\left(\frac{a+b}{2}\right)+\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x\right)
\end{aligned}
$$

which proves the statement.
(ii) Since f is convex on $[a, b]$, then

$$
f\left(t x+(1-t) \frac{a+b}{2}\right)-f(x) \geq(1-t)\left(\frac{a+b}{2}-x\right) f^{\prime}(x)
$$

for all $t \in(0,1)$ and $x \in(a, b)$. Integrating on $[a, b]$, we derive

$$
H(t)-\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \geq \frac{1-t}{b-a} \int_{a}^{b}\left(\frac{a+b}{2}-x\right) f^{\prime}(x) \mathrm{d} x, \quad t \in[0,1] .
$$

Since a simple computation shows

$$
\int_{a}^{b}\left(\frac{a+b}{2}-x\right) f^{\prime}(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x-(b-a) \frac{f(a)+f(b)}{2}
$$

the inequality (2) is thus proven.
On the other hand, we have:

$$
f\left(\frac{a+b}{2}\right)-f(a) \geq \frac{b-a}{2} f^{\prime}(a) \quad \text { and } \quad f\left(\frac{a+b}{2}\right)-f(b) \geq \frac{a-b}{2} f^{\prime}(b)
$$

which gives, by addition:

$$
f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2} \geq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(a-b)}{4}
$$

Since $H(t) \geq f\left(\frac{a+b}{2}\right)$ for all $t \in[0,1]$, the above inequality yields that (3) is valid and the proof is finished.

Now, we shall introduce another mapping which is in connection with H and also with Hadamard's result.

Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a convex function and $a, b \in I$ with $a<b$. Define the mapping:

$$
G:[0,1] \rightarrow \mathbf{R}, G(t):=\frac{1}{2}\left(f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left((1-t) \frac{a+b}{2}+t b\right)\right)
$$

The following theorem contains some remarkable properties on this mapping.
Theorem 2. Let f and G be as above. Then:
(i) G is convex and monotonously increasing on $[0,1]$;
(ii) We have:

$$
\inf _{t \in[0,1]} G(t)=G(0)=f\left(\frac{a+b}{2}\right)
$$

and

$$
\begin{equation*}
\sup _{t \in[0,1]} G(t)=G(1)=\frac{f(a)+f(b)}{2} \tag{5}
\end{equation*}
$$

(iii) For all $t \in[0,1]$ the following inequality is valid:

$$
\begin{equation*}
H(t) \leq G(t) \tag{6}
\end{equation*}
$$

(iv) One has the inequalities:

$$
\begin{gather*}
\frac{2}{b-a} \int_{(3 a+b) / 4}^{(a+3 b) / 4} f(x) \mathrm{d} x \leq \frac{1}{2}\left(f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right) \tag{7}\\
\quad \leq \int_{0}^{1} G(t) \mathrm{d} t \leq \frac{1}{2}\left(f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right)
\end{gather*}
$$

(v) If f is differentiable on I, then:

$$
\begin{equation*}
0 \leq H(t)-f\left(\frac{a+b}{2}\right) \leq G(t)-H(t) \quad \text { for all } t \in[0,1] . \tag{8}
\end{equation*}
$$

Proof. (i) Let $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$. Therefore

$$
\begin{aligned}
G\left(\alpha t_{1}+\beta t_{2}\right) & =\frac{1}{2}\left(f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right)\right)\right. \\
& +f\left(\alpha\left(\left(1-t_{1}\right) \frac{a+b}{2}+t_{1} b\right)+\beta\left(\left(1-t_{2}\right) \frac{a+b}{2}+t_{2} b\right)\right) \\
& \leq \frac{1}{2}\left(\alpha\left(f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+f\left(\left(1-t_{1}\right) \frac{a+b}{2}+t_{1} b\right)\right)\right. \\
& \left.+\beta\left(f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right)+f\left(\left(1-t_{2}\right) \frac{a+b}{2}+t_{2} b\right)\right)\right) \\
& =\alpha G\left(t_{1}\right)+\beta G\left(t_{2}\right)
\end{aligned}
$$

which shows the convexity of G.
Now, since G is convex on $[0,1]$, then for all $t_{1}, t_{2} \in(0,1)$ with $t_{2}>t_{1}$ we have:

$$
\begin{aligned}
& \left(G\left(t_{2}\right)-G\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right) \geq G_{+}^{\prime}\left(t_{1}\right) \\
& \quad=\frac{1}{2}\left(f_{+}^{\prime}\left(\left(1-t_{1}\right) \frac{a+b}{2}+t_{1} b\right)-f_{+}^{\prime}\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)\right)\left(\frac{b-a}{2}\right)
\end{aligned}
$$

where $f_{+}^{\prime}\left(x_{0}\right)$ denotes the right derivative of f in the point x_{0}.
By the convexity of f one gets:

$$
f_{+}^{\prime}\left(\left(1-t_{1}\right) \frac{a+b}{2}+t_{1} b\right) \geq f_{+}^{\prime}\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right), \quad t_{1} \in(0,1)
$$

which shows that G is monotonously increasing on $(0,1)$ and (see (ii)) also in $[0,1]$.
(ii) f being convex on $[a, b]$, we have:

$$
G(t) \geq f\left(\frac{1}{2}\left(t a+(1-t) \frac{a+b}{2}+(1-t) \frac{a+b}{2}+t b\right)\right)=f\left(\frac{a+b}{2}\right)
$$

which implies (4).
On the other hand, we also have:

$$
\begin{aligned}
G(t) & \leq \frac{1}{2}\left(t f(a)+(1-t) f\left(\frac{a+b}{2}\right)+(1-t) f\left(\frac{a+b}{2}\right)+t f(b)\right) \\
& =t \cdot \frac{f(a)+f(b)}{2}+(1-t) f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

for all t in $[0,1]$, which implies that

$$
G(t) \leq G(1)=\frac{f(a)+f(b)}{2}, \quad t \in[0,1]
$$

i.e., the statement (5).
(iii) Let us consider the mapping $g:[a, b] \rightarrow \mathbf{R}, g(x)=f\left(t x+(1-t) \frac{a+b}{2}\right)$. Clearly, g is convex on $[a, b]$ and by HADAMARD's inequality one has:

$$
H(t)=\frac{1}{b-a} \int_{a}^{b} g(x) \mathrm{d} x \leq \frac{g(a)+g(b)}{2}=G(t)
$$

for all $t \in[0,1]$.
(iv) Since f is convex on $[(3 a+b) / 4,(a+3 b) / 4]$, Hadamard's inequalities show the first part of (7). The same inequality applied for the convex mapping G yields the second part of (7) and we omit the details.
(v) f being differentiable convex on $[a, b]$, we have:

$$
f\left(\frac{a+b}{2}\right)-f\left(t x+(1-t) \frac{a+b}{2}\right) \geq t\left(\frac{a+b}{2}-x\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right)
$$

for al $t \in(0,1)$ and $x \in(a, b)$. Integrating this inequality over x on $[a, b]$ one gets:

$$
f\left(\frac{a+b}{2}\right)-H(t) \geq \frac{t}{b-a} \int_{a}^{b}\left(\frac{a+b}{2}-x\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right) \mathrm{d} x
$$

Since

$$
\frac{t}{b-a} \int\left(\frac{a+b}{2}-x\right) f^{\prime}\left(t x+(1-t) \frac{a+b}{2}\right) \mathrm{d} x=H(t)-G(t), \quad t \in[0,1]
$$

(8) is proven.

Now, we will consider another mapping associated to HADAMARD's inequality given by:

$$
\left.L:[0,1] \rightarrow \mathbf{R}, L(t):=\frac{1}{2(b-a)} \int_{a}^{b} f(t a+(1-t) x)+f((1-t) x+t b)\right) \mathrm{d} x
$$

where $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ and $a, b \in I \quad(a<b)$.
The following theorem also holds
Theorem 3. Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a convex mapping on I and a, b are as above. Then
(i) L is convex on $[0,1]$;
(ii) We have the inequalities:

$$
\begin{equation*}
G(t) \leq L(t) \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) \mathrm{d} x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2} \tag{9}
\end{equation*}
$$

for all $t \in[0,1]$ and

$$
\begin{equation*}
\sup _{t \in[0,1]} L(t)=\frac{f(a)+f(b)}{2} . \tag{10}
\end{equation*}
$$

(iii) One has the inequalities:

$$
\begin{equation*}
H(1-t) \leq L(t) \quad \text { and } \quad \frac{H(t)+H(1-t)}{2} \leq L(t) \tag{11}
\end{equation*}
$$

for all $t \in[0,1]$.
Proof. (i) is obvious by the convexity of f (see e.g. [4]) and we shall omit the details.
(ii) By Jensen's integral inequality one has:

$$
\begin{aligned}
L(t) & \geq \frac{1}{2}\left(f\left(\frac{1}{b-a} \int_{a}^{b}((1-t) x+t a) \mathrm{d} x\right)+f\left(\frac{1}{b-a} \int_{a}^{b}((1-t) x+t b) \mathrm{d} x\right)\right) \\
& =\frac{1}{2}\left(f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}\right)\right)=G(t) .
\end{aligned}
$$

By the convexity of f one has:

$$
\begin{aligned}
L(t) & \leq \frac{1}{2(b-a)} \int_{a}^{b}((1-t) f(x)+t f(a)+(1-t) f(x)+t f(b)) \mathrm{d} x \\
& =\frac{1-t}{b-a} \int_{a}^{b} f(x) \mathrm{d} x+t \cdot \frac{f(a)+f(b)}{2}
\end{aligned}
$$

for all $t \in[0,1]$.
The last part of (9) is obvious.
The bound (10) follows from (9).
By the convexity of f one has:

$$
\begin{aligned}
L(t) & \geq \frac{1}{b-a} \int_{a}^{b} f\left(\frac{t a+(1-t) x+(1-t) x+t b}{2}\right) \mathrm{d} x \\
& =\frac{1}{b-a} \int_{a}^{b} f\left((1-t) x+t \cdot \frac{a+b}{2}\right) \mathrm{d} x=H(1-t)
\end{aligned}
$$

for all $t \in[0,1]$ and the first part of (11) is proved. For the second part one has:

$$
L(t) \geq H(1-t) \quad \text { and } \quad L(t) \geq G(t) \geq H(t)
$$

for all $t \in[0,1]$.
Applications: 1. Let $p \geq 1$ and $0 \leq a<b$. Then one has the inequalities:

$$
\begin{aligned}
0 \leq & \frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}-\frac{1}{t(p+1)(b-a)}\left(\left(\frac{a+b}{2}+t\left(\frac{b-a}{2}\right)\right)^{p+1}\right. \\
& \left.-\left(\frac{a+b}{2}-t\left(\frac{b-a}{2}\right)\right)^{p+1}\right) \leq(1-t)\left(\frac{a^{p}+b^{p}}{2}-\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{t(p+1)(b-a)}\left(\left(\frac{a+b}{2}+t\left(\frac{b-a}{2}\right)\right)^{p+1}-\left(\frac{a+b}{2}-t\left(\frac{b-a}{2}\right)\right)^{p+1}\right) \\
& \leq \frac{1}{2}\left(\left(t a+(1-t) \frac{a+b}{2}\right)^{p}+\left((1-t) \frac{a+b}{2}+t b\right)^{p}\right)
\end{aligned}
$$

for all $t \in(0,1]$.
The proof follows by the inequalities (2) and (6) applied to the convex mapping $f:[0, \infty) \rightarrow[0, \infty), f(x)=x^{p} \quad(p \geq 1)$.
2. Let $0<a<b$. Then one has:

$$
0 \leq \frac{\ln b-\ln a}{b-a}-\frac{1}{t(b-a)} \ln \left(\frac{\frac{a+b}{2}+t\left(\frac{b-a}{2}\right)}{\frac{a+b}{2}-t\left(\frac{b-a}{2}\right)}\right) \leq(1-t)\left(\frac{a+b}{2 a b}-\frac{\ln b-\ln a}{b-a}\right)
$$

and

$$
\frac{1}{t(b-a)} \ln \left(\frac{\frac{a+b}{2}+t\left(\frac{b-a}{2}\right)}{\frac{a+b}{2}-t\left(\frac{b-a}{2}\right)}\right) \leq \frac{1}{2} \frac{a+b}{\left(t a+(1-t) \frac{a+b}{2}\right)\left((1-t) \frac{a+b}{2}+t b\right)}
$$

for all $t \in(0,1]$.
The proof is obvious from (2) and (6) for the mapping $f:(0, \infty) \rightarrow(0, \infty)$, $f(x):=1 / x$.
3. Let $p \geq 1$ and $0 \leq a<b$. Then one has the inequalities:

$$
\begin{aligned}
& \frac{1}{2}\left(\left(t a+(1-t) \frac{a+b}{2}\right)^{p}+\left((1-t) \frac{a+b}{2}+t b\right)^{p}\right) \\
\leq & \frac{1}{(1-t)(p+1)}\left(b^{p+1}+(t a+(1-t) b)^{p+1}-((1-t) a+t b)^{p+1}-a^{p+1}\right) \\
\leq & \frac{1-t}{b-a} \cdot \frac{b^{p+1}-a^{p+1}}{p+1}+t \cdot \frac{a^{p}+b^{p}}{2} \leq \frac{a^{p}+b^{p}}{2}
\end{aligned}
$$

for all $t \in[0,1)$.
The proof is obvious by the inequality (9) for $f(x)=x^{p} \quad(p \geq 1)$.
4. Let $0<a<b$. Then one has:

$$
\begin{aligned}
\frac{\frac{a+b}{2}}{\left(t a+(1-t) \frac{a+b}{2}\right)\left((1-t) \frac{a+b}{2}+t b\right)} & \leq \frac{1}{2(b-a)(1-t)} \ln \left(\frac{b(t a+(1-t) b)}{a((1-t) a+t b)}\right) \\
\leq \frac{1-t}{b-a}(\ln b-\ln a)+t \cdot \frac{a+b}{2 a b} & \leq \frac{a+b}{2 a b}
\end{aligned}
$$

for all $t \in[0,1)$.
The proof is obvious by (9) for $f(x)=1 / x, x>0$.
For other inequalities connected to HaDAmaRD's result we refer to $[\mathbf{1}-\mathbf{6}]$ where further references are given.

REFERENCES

1. H. Alzer: A note on Hadamard's inequalities. C.R. Math., Rep. Acad. Sci. Canada, 11 (1989), 255-258.
2. S. S. Dragomir: Two refinements of Hadamards's inequalities. Coll. Sci. Pap. Fac. Sci., Kragujevac, 11 (1990), 23-26.
3. S. S. Dragomir, J. E. Pečarić, J. Sándor: A note on the Jensen-Hadamard inequality. L'Anal. Num. Théor. L'Approx., 19 (1990), 29-34.
4. S. S. Dragomir: A mapping in connection to Hadamard's inequalities. Anz. Öster. Akad. Wiss. Math.-Naturwiss. Klasse, 128 (1991), 17-20.
5. D. S. Mitrinović, I. B. Lacković: Hermite and convexity. Aequat. Math., 28 (1985), 225-232.
6. J. SÁNDOR: Some integral inequalities. Elem. Math., 43 (1988), 177-180.

Department of Mathematics,
(Received February 27, 1992)
Timişoara University,
B-dul V. Pârvan 4,
R-1900 Timişoara,
România
32308 Pranjani,
Yugoslavia

4136 Forteni No. 79,
R-Jud. Hargita,
România

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: Primary 26D07, Secondary 26D15

