
Univ. Beograd. Publ. Elektrotehn. Fak.

Ser. Mat. 4 (1993), 3{10.

ON SOME REFINEMENTS

OF HADAMARD'S INEQUALITIES

AND APPLICATIONS

Sever S. Dragomir, Dragoljub M. Milo�sevi�c, J�ozsef S�andor

Some new re�nements of Hadamard's inequalities and applications are given.

In the paper [4] S. S. Dragomir introduced the following mapping associ-
ated to Hadamard's inequalities:

H : [0; 1]! R; H(t) :=
1

b� a

bZ
a

f

�
tx+ (1 � t)

a+ b

2

�
dx;

where f : I � R ! R is a convex mapping on I; a; b 2 I with a < b and he
pointed out the following fundamental properties of this function. Namely, it was
proved that:

(i) H is convex and monotonously increasing on [0; 1]

and

(ii) f

�
a+ b

2

�
� H(t) �

1

b� a

bZ
a

f(x) dx;

for all t 2 [0; 1]:

In this paper we shall establish other facts connected to Hadamard's result.

Theorem 1. If f and H are as above, then:

(i) The following inequalities:

(1) f

�
a+ b

2

�
�

2

b� a

(a+3b)=4Z
(3a+b)=4

f(x) dx �

1Z
0

H(t) dt
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�
1

2

0
@f �a + b

2

�
+

1

b� a

bZ
a

f(x) dx

1
A

hold;

(ii) If f is di�erentiable on I then one has the inequalities:

(2) 0 �
1

b� a

bZ
a

f(t) dt �H(t) � (1� t)

0
@f(a) + f(b)

2
�

1

b� a

bZ
a

f(x) dx

1
A

and

(3) 0 �
f(a) + f(b)

2
�H(t) �

(f 0(b) � f 0(a))(b� a)

4

for all t 2 [0; 1]:

Proof. (i) H being convex on [0; 1]; Hadamard's inequalities yield

1

b� a

bZ
a

f

�
2x+ a + b

4

�
dx = H

�
1

2

�
�

1Z
0

H(t) dt �
H(0) +H(1)

2

=
1

2

0
@f �a+ b

2

�
+

1

b� a

bZ
a

f(x) dx

1
A ;

which proves the statement.

(ii) Since f is convex on [a; b]; then

f

�
tx+ (1� t)

a+ b

2

�
� f(x) � (1� t)

�
a+ b

2
� x

�
f 0(x)

for all t 2 (0; 1) and x 2 (a; b): Integrating on [a; b]; we derive

H(t)�
1

b� a

bZ
a

f(x) dx �
1� t

b� a

bZ
a

�
a+ b

2
� x

�
f 0(x) dx; t 2 [0; 1]:

Since a simple computation shows

bZ
a

�
a+ b

2
� x

�
f 0(x) dx =

bZ
a

f(x) dx � (b� a)
f(a) + f(b)

2
;

the inequality (2) is thus proven.

On the other hand, we have:

f

�
a + b

2

�
� f(a) �

b� a

2
f 0(a) and f

�
a+ b

2

�
� f(b) �

a� b

2
f 0(b);
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which gives, by addition:

f

�
a+ b

2

�
�

f(a) + f(b)

2
�

(f 0(b)� f 0(a))(a � b)

4
:

Since H(t) � f

�
a+ b

2

�
for all t 2 [0; 1]; the above inequality yields that (3)

is valid and the proof is �nished.

Now, we shall introduce another mapping which is in connection with H and
also with Hadamard's result.

Let f : I � R! R be a convex function and a; b 2 I with a < b: De�ne the
mapping:

G : [0; 1]! R; G(t) :=
1

2

�
f

�
ta+ (1� t)

a + b

2

�
+ f

�
(1� t)

a + b

2
+ tb

��
:

The following theorem contains some remarkable properties on this mapping.

Theorem 2. Let f and G be as above. Then:

(i) G is convex and monotonously increasing on [0; 1];

(ii) We have:

(4) inf
t2[0;1]

G(t) = G(0) = f

�
a+ b

2

�

and

(5) sup
t2[0;1]

G(t) = G(1) =
f(a) + f(b)

2
;

(iii) For all t 2 [0; 1] the following inequality is valid :

(6) H(t) � G(t);

(iv) One has the inequalities:

(7)
2

b� a

(a+3b)=4Z
(3a+b)=4

f(x) dx �
1

2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��

�

1Z
0

G(t) dt �
1

2

�
f

�
a+ b

2

�
+

f(a) + f(b)

2

�
;

(v) If f is di�erentiable on I, then:

(8) 0 � H(t)� f

�
a+ b

2

�
� G(t)�H(t) for all t 2 [0; 1]:
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Proof. (i) Let �; � � 0 with �+ � = 1 and t1; t2 2 [0; 1]: Therefore

G(�t1 + �t2) =
1

2

�
f
�
�
�
t1a+ (1� t1)

a+ b

2

�
+ �

�
t2a+ (1 � t2)

a+ b

2

��

+ f
�
�
�
(1� t1)

a+ b

2
+ t1b

�
+ �
�
(1� t2)

a+ b

2
+ t2b

��

�
1

2

�
�
�
f
�
t1a+ (1� t1)

a+ b

2

�
+ f
�
(1� t1)

a + b

2
+ t1b

��

+ �
�
f
�
t2a+ (1� t2)

a+ b

2

�
+ f
�
(1� t2)

a+ b

2
+ t2b

���
= �G(t1) + �G(t2);

which shows the convexity of G.

Now, since G is convex on [0; 1]; then for all t1; t2 2 (0; 1) with t2 > t1 we
have:�

G(t2) �G(t1)
�
=(t2 � t1) � G0

+(t1)

=
1

2

�
f 0+

�
(1 � t1)

a+ b

2
+ t1b

�
� f 0+

�
t1a+ (1 � t1)

a+ b

2

���
b� a

2

�
;

where f 0+(x0) denotes the right derivative of f in the point x0:

By the convexity of f one gets:

f 0+

�
(1� t1)

a+ b

2
+ t1b

�
� f 0+

�
t1a+ (1� t1)

a + b

2

�
; t1 2 (0; 1);

which shows that G is monotonously increasing on (0; 1) and (see (ii)) also in [0; 1]:

(ii) f being convex on [a; b]; we have:

G(t) � f

�
1

2

�
ta+ (1 � t)

a+ b

2
+ (1 � t)

a+ b

2
+ tb

��
= f

�
a+ b

2

�
;

which implies (4).

On the other hand, we also have:

G(t) �
1

2

�
tf(a) + (1� t)f

�
a+ b

2

�
+ (1� t)f

�
a+ b

2

�
+ tf(b)

�

= t �
f(a) + f(b)

2
+ (1 � t)f

�
a + b

2

�

for all t in [0; 1]; which implies that

G(t) � G(1) =
f(a) + f(b)

2
; t 2 [0; 1];

i.e., the statement (5).
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(iii) Let us consider the mapping g : [a; b]! R; g(x) = f
�
tx+ (1� t)a+b

2

�
:

Clearly, g is convex on [a; b] and by Hadamard's inequality one has:

H(t) =
1

b� a

bZ
a

g(x) dx �
g(a) + g(b)

2
= G(t)

for all t 2 [0; 1]:

(iv) Since f is convex on [(3a + b)=4; (a + 3b)=4]; Hadamard's inequalities
show the �rst part of (7). The same inequality applied for the convex mapping G
yields the second part of (7) and we omit the details.

(v) f being di�erentiable convex on [a; b]; we have:

f

�
a+ b

2

�
� f

�
tx+ (1 � t)

a+ b

2

�
� t

�
a+ b

2
� x

�
f 0
�
tx+ (1� t)

a + b

2

�

for al t 2 (0; 1) and x 2 (a; b): Integrating this inequality over x on [a; b] one gets:

f

�
a+ b

2

�
�H(t) �

t

b� a

bZ
a

�
a+ b

2
� x

�
f 0
�
tx+ (1� t)

a+ b

2

�
dx:

Since

t

b� a

Z �
a+ b

2
� x

�
f 0
�
tx+ (1� t)

a + b

2

�
dx = H(t)� G(t); t 2 [0; 1];

(8) is proven.

Now, we will consider another mapping associated toHadamard's inequality
given by:

L : [0; 1]! R; L(t) : =
1

2(b� a)

bZ
a

f
�
ta + (1� t)x) + f((1 � t)x+ tb)

�
dx;

where f : I � R! R and a; b 2 I (a < b):

The following theorem also holds

Theorem 3. Let f : I � R! R be a convex mapping on I and a; b are as above.

Then

(i) L is convex on [0; 1];

(ii) We have the inequalities:

(9) G(t) � L(t) �
1� t

b� a

bZ
a

f(x) dx+ t �
f(a) + f(b)

2
�

f(a) + f(b)

2
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for all t 2 [0; 1] and

(10) sup
t2[0;1]

L(t) =
f(a) + f(b)

2
:

(iii) One has the inequalities:

(11) H(1� t) � L(t) and
H(t) +H(1� t)

2
� L(t)

for all t 2 [0; 1]:

Proof. (i) is obvious by the convexity of f (see e.g. [4]) and we shall omit the
details.

(ii) By Jensen's integral inequality one has:

L(t) �
1

2

0
@f

0
@ 1

b� a

bZ
a

((1 � t)x+ ta) dx

1
A+ f

0
@ 1

b� a

bZ
a

((1� t)x+ tb) dx

1
A
1
A

=
1

2

�
f

�
ta+ (1� t)

a + b

2

�
+ f

�
tb+ (1� t)

a+ b

2

��
= G(t):

By the convexity of f one has:

L(t) �
1

2(b� a)

bZ
a

�
(1� t)f(x) + tf(a) + (1� t)f(x) + tf(b)

�
dx

=
1� t

b� a

bZ
a

f(x) dx + t �
f(a) + f(b)

2

for all t 2 [0; 1]:

The last part of (9) is obvious.

The bound (10) follows from (9).

By the convexity of f one has:

L(t) �
1

b� a

bZ
a

f

�
ta + (1� t)x+ (1� t)x+ tb

2

�
dx

=
1

b� a

bZ
a

f

�
(1 � t)x+ t �

a+ b

2

�
dx = H(1� t)

for all t 2 [0; 1] and the �rst part of (11) is proved. For the second part one has:

L(t) � H(1� t) and L(t) � G(t) � H(t)
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for all t 2 [0; 1]:

Applications: 1. Let p � 1 and 0 � a < b: Then one has the inequalities:

0 �
bp+1

� ap+1

(p+ 1)(b� a)
�

1

t(p+ 1)(b� a)

 �
a + b

2
+ t

�
b� a

2

��p+1

�

�
a+ b

2
� t

�
b� a

2

��p+1
!
� (1� t)

�
ap + bp

2
�

bp+1
� ap+1

(p + 1)(b� a)

�

and

1

t(p + 1)(b� a)

 �
a+ b

2
+ t

�
b� a

2

��p+1

�

�
a+ b

2
� t

�
b� a

2

��p+1
!

�
1

2

��
ta+ (1� t)

a + b

2

�p

+

�
(1� t)

a+ b

2
+ tb

�p�

for all t 2 (0; 1]:

The proof follows by the inequalities (2) and (6) applied to the convex map-
ping f : [0;1)! [0;1); f(x) = xp (p � 1):

2. Let 0 < a < b: Then one has:

0 �
ln b� ln a

b� a
�

1

t(b � a)
ln

 
a+b
2

+ t
�
b�a
2

�
a+b
2
� t
�
b�a
2

�
!
� (1� t)

�
a+ b

2ab
�

ln b� ln a

b� a

�

and

1

t(b� a)
ln

 
a+b
2

+ t
�
b�a
2

�
a+b
2
� t
�
b�a
2

�
!
�

1

2

a+ b�
ta+ (1� t)a+b

2

� �
(1� t)a+b

2
+ tb

�
for all t 2 (0; 1]:

The proof is obvious from (2) and (6) for the mapping f : (0;1) ! (0;1);
f(x) := 1=x:

3. Let p � 1 and 0 � a < b: Then one has the inequalities:

1

2

��
ta+ (1� t)

a+ b

2

�p

+

�
(1 � t)

a+ b

2
+ tb

�p�

�
1

(1� t)(p+ 1)

�
bp+1 + (ta+ (1� t)b)p+1

� ((1 � t)a + tb)p+1
� ap+1

�

�
1� t

b� a
�
bp+1

� ap+1

p+ 1
+ t �

ap + bp

2
�

ap + bp

2

for all t 2 [0; 1):

The proof is obvious by the inequality (9) for f(x) = xp (p � 1):
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4. Let 0 < a < b: Then one has:

a+b
2�

ta+ (1� t)a+b
2

� �
(1� t)a+b

2
+ tb

� � 1

2(b� a)(1� t)
ln

�
b(ta+ (1� t)b)

a((1� t)a+ tb)

�

�
1� t

b� a
(ln b� ln a) + t �

a + b

2ab
�

a+ b

2ab

for all t 2 [0; 1):

The proof is obvious by (9) for f(x) = 1=x; x > 0:

For other inequalities connected to Hadamard's result we refer to [1{6]
where further references are given.
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