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Let a(n) denote the number of non-isomorphic Abelian groups with n elements.
It is shown that there is a constant C > 0 such that

Z a(n+ a(n)) =Cr + O(x11/12+5).

n<e

Let a(n), as usual, denote the number of non-isomorphic Abelian (commuta-
tive) groups with n elements. Tt is well-known that this is a multiplicative function
(a(mn) = a(m)a(n) if (m,n) = 1) such that a(p®) = P(a) for any prime p (hence-
forth p will always denote primes), where P(«) is the number of (unrestricted)
partitions of a. Thus, for Res > 1,

> am)n™ = ((s)C(25)¢(3s) - ..

n=1

where ((s) is the RIEMANN zeta-function. The first paper in which the function
a(n) was studied was written by P. ErRDGs and G. SzZEKERES [5]. Later the
distribution of values of a(n) was extensively studied by many authors (see, for
example, the papers [2]-[11]). The function a(n) has the property that a(n) =
a(s(n)), where s(n) is the squarefull part of n. Functions with this property were
named s-functions in [8], where their local densities were discussed. Problems
involving a(n) at consecutive integers were investigated in [3], and those involving
the iterates of a(n) in [4]. The local densities of a(n) were studied in [6], [7] and [11].
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The aim of this note is to furnish an asymptotic formula for the summatory function
of a(n + a(n)). This is motivated by the work of C. SPIrRO [12], who proved

X

1> &
Z > (log )7’

n<z,d(n+d(n))=d(n)

where as usual d(n) is the number of divisors of n. It seems reasonable to conjecture
that, for some D > 0,

(1) > d(n+d(n)) = Dxlogz + O(x),

n<w

although to the best of my knowledge no one has proved or disproved (1) so far.
The corresponding problem when d(n) is replaced by a(n) (or a suitable prime-
-independent multiplicative function f(n) such that f(p) = 1) is much less difficult.
This is roughly due to the fact that d(p) = 2 and a(p) = 1. We shall prove the
following

Theorem. There is an effectively computable constant C' > 0 such that for any
gen € >0

(2) > a(n+a(n)) = Cx+ O(x'/12F),

n<w

Before we give the proof of (2) it should be remarked that very likely the
exponent 11/12 in the error term in (2) is far from the best possible one. In fact,
I conjecture that the error term in question is O(J:l/z"'a) for any given € > 0 and
Q(x'/?=%) for any given § > 0. It would be interesting to compare C in (2) with
the constant

— N -1 — —
Co = lim & Z: a(n) = C(2)¢(3)C(4) ... =2.29485 ...
which represents the mean value of a(n). Numerical computation of C' is not easy,
and I cannot rule out the possibility that C' = Cp.

Henceforth let ¢ denote squarefree numbers (p?(¢) = 1) and s squarefull
numbers (p | s implies p? | s), respectively. We start from

> a(nta(n) = Y aln+k) =) S(ak),

n<e k<z® n<z,a(n)=k k<z*s

where we used the bound (see [9]) log a(n) < logn/loglogn, which implies a(n) <
n® (n > ng), and where we set

Sz, k) = Z aln+ k) = Z Z a(gs+ k)
n<z,a(n)=k s<wz,a(s)=k g<z/s, (g,5)=1

2. S algs+k)+0@

s<ze a(s)=h q<n/s, (2,5)=1
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uniformly in k, where « is a constant such that 0 < « < 1/3 which will be de-
termined later. Here we used the already mentioned property that a(n) = a(s) if
n = gs, (¢,s) = 1, which follows from a(p) = 1 and multiplicativity. Now we shall
use (see [7] and [8]) the uniform estimate

Z 1:671'_21‘1_[(1—1—])_1)_1—I—O(xl/zra)
q<z, (g,r)=1 plr

to obtain, uniformly for 1 < s < z® < 2'/3, 1 < k < 2°,

Z a(gs+ k) = Z p(d)a(d*ls + k)

g<lz/s,(q,5)=1 d2l<z/s, (d,s)=1,(I,5)=1

= Y @ 3 a(d215+k)+o<f 3 xfd—2)
d<z=/2 (d,s)=1 I<z/(d?s),(I,s)=1 5 d>xe/?

= > DY om@) Y aldSsmA k) + O s
d<z®/2 (d;s)=1 3|s m<z/(d2ds)

= p(d) Y op@) D aln)+ O 4 O,
d<z=/2 (d,s)=1 d|s n<z,n=k (modr)

Here we set © = d?ds and we used the elementary relations

ROED TS WITES S
dln ’

d?|n

Moreover the first O-term above may be absorbed by the second one if 0 < o < 1/3.
Thus we are left with the evaluation of

T(x, k,r) = Z a(n) (I<k<z® 1<r<ua),

n<z,n=k (modr)

and we seek an asymptotic formula for T'(z, k, ) with the error term uniform in &
and r. There are results in the literature on T'(z, k, ) due to H.-E. RICHERT [11]
and J. DUTTLINGER [2]. For (k,r) = 1 one can get by an elementary argument,
uniformly for 1 <r <z,

(3) T(x,k,r) = B(r)x + O((rx)**),  B(r) = 0(1/r),

where B(r) is given explicitly by (5) and (6). For 1 <k <z, 1 <r <z, (k,r)>1
formula (5.2) of DUTTLINGER’s paper implies that uniformly

(4) T(x,k,r) = B(k,r)x + O((re)'**¢),  B(k,r) = 0(*7),

since in that case d = dyds < z° and (4) follows by the condition a(m) | di, ae(m) =
I1 p, so that one can majorize over squarefull numbers. Thus combining (3) and
plm

(4) we have a formula for T'(z, k, 7) valid in all cases, where we set B(r) = B(k,r)
if (k,r) = 1 for notational convenience. If r is bounded by a (relatively) small
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power of &, then both RICHERT and DUTTLINGER obtain much sharper results for
T(z, k,r), which involve the existence of two more main terms besides B(k,r)z. An
obvious way to improve on the exponent 11/12 in (2) is to sharpen (3) and (4). We
postpone the proof of (3) and carry on with the evaluation of S(z, k). We obtain

S(z, k) = O(x'+=°/?)

+ S uld) Y] (@) {xB(k, d*5s) + O+ d(d5)1/?)}
s<ze, a(s)=k d<z=/2 (d,;s)=1 3|s
= x{ Z Z Zu Bk, d (55)}
s=1,a(s)=k d=1,(d,s)= 3|s

—|—O(l‘1+€_a/2)—|—0<l‘1/2+€ Z s Z d)

s<z®  d<gpal/?
= RA(K) + 04701 4 O(aHH52H) = 2 A(K) + O(a1/12+)
for @« = 1/6 with
Ak = ) Z (d) > u(8) B(k, d%6s).
s=1,a(s)=k d=1,(d,s)= 5ls

By using B(k,r) < r*~! in the relevant range it follows that

Z n+a(n ZSxk_xZA 11/12"'5)

n<w k<z* k<z*

:xg:lA(k) (Z Z 55_1)+O(1‘11/12+5)

k>z® s=1,a(s)=k
=2y Alk)+ O(x'/17),
k=1

since a(s) = k implies s > exp(Cy log k/loglog k) for some C; > 0, and > 1 <
22, This proves (2) with s<z

C=> A(k)>0

Finally it remains to sketch the proof of (3) for (k,r) = 1. Let x(n) be a
DirRICHLET character modulo r. If g is the principal character mod r, then

Z Xo(n)a(n) = Z a(n) = Z a(s) Z 1

n<e n<e, (n,r)=1 s<z, (s,7)=1 9<e/s,(g,5)=1, (g,;r)=1

- 5ol el

s<wz,(s,r)=1

61‘ a(P)p™* +a(P’)p> + - 1/2
= - 1 +e
pir pir
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= 671'_20(7“)9: + O(J:l/z"'a)

uniformly for 1 < r < z, where we have set

(5) Clr) = H 1 H(l N P(Q)p_zj—_i_P]E%)lp_B—i_ . ) _ o).

If x(n) is a non-principal character mod r, then

> a(n)x(n) =D x(s)a(s) > xl)

n<e s<w g<lz/s,(q,5)=1

= x(s)a(s) > p(d)x(d*)
s<wz d?i<z/s, (d,s)=1,(I,5)=1

= x(s)a(s) > p(d)x*(d) > X
s<w d<(z/s)1/2, (d,s)=1 I<z/(d?s),(I,s)=1

=D x(s)a(s) Yo @) Y_p@x@) D> x(m).
s<w d<(z/s)1/2,(d,s)=1 8|s m<z/(d26s)

To estimate the innermost sum above we use the classical POLYA-VINOGRA-
pov inequality (see H. DaveENportT [1, Ch. 23]):

Z x(n) = 0@ % logr) (X # Xo; M,N >1).

M<n<M+N
This gives
Z a(n)x(n) < z'/? Z a(s)d(s)s™ 2 2 logr < (wr)'/?Fe.
n<x s<w

Using then the orthogonality relations for characters (¢ is EULER’s function),
namely

n =k (modr
: Z X(m)x(k) = { ; nZk Emodr; ((k,r) - 1)

QD(T) X (modr)
we obtain
1 _
Tekn)= o (§x<n>a<n>)
_ 6C(r)z plzdey o L v n)a(n
S o s Y x(Saiman)

= B(r)z + O((J:r)l/z"'a)
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uniformly in r, where

(6)

by = 560
= %H(l—%)_l<l+%)_lg<1+ P(Q)p_zf'fﬁ)lp‘3+m)
~o(Hl==) =o)

This proves (3), and completes the proof of the Theorem.
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