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AN ASYMPTOTIC FORMULA INVOLVING
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Dedicated to Professor Paul Erd}os on the occasion of his 80th birthday

Let a(n) denote the number of non-isomorphic Abelian groups with n elements.

It is shown that there is a constant C > 0 such that

X

n�x

a(n+ a(n)) = Cx+ O(x11=12+"):

Let a(n), as usual, denote the number of non-isomorphic Abelian (commuta-

tive) groups with n elements. It is well-known that this is a multiplicative function

(a(mn) = a(m)a(n) if (m;n) = 1) such that a(p�) = P (�) for any prime p (hence-

forth p will always denote primes), where P (�) is the number of (unrestricted)

partitions of �. Thus, for Re s > 1,

1X
n=1

a(n)n�s = �(s)�(2s)�(3s) . . . ;

where �(s) is the Riemann zeta-function. The �rst paper in which the function

a(n) was studied was written by P. Erd}os and G. Szekeres [5]. Later the

distribution of values of a(n) was extensively studied by many authors (see, for

example, the papers [2]{[11]). The function a(n) has the property that a(n) =

a(s(n)), where s(n) is the squarefull part of n. Functions with this property were

named s-functions in [8], where their local densities were discussed. Problems

involving a(n) at consecutive integers were investigated in [3], and those involving

the iterates of a(n) in [4]. The local densities of a(n) were studied in [6], [7] and [11].
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The aim of this note is to furnish an asymptotic formula for the summatory function

of a(n+ a(n)). This is motivated by the work of C. Spiro [12], who proved

X
n�x; d(n+d(n))=d(n)

1�
x

(logx)7
;

where as usual d(n) is the number of divisors of n. It seems reasonable to conjecture

that, for some D > 0,

(1)
X
n�x

d(n+ d(n)) = Dx logx+ O(x);

although to the best of my knowledge no one has proved or disproved (1) so far.

The corresponding problem when d(n) is replaced by a(n) (or a suitable prime-

-independent multiplicative function f(n) such that f(p) = 1) is much less di�cult.

This is roughly due to the fact that d(p) = 2 and a(p) = 1. We shall prove the

following

Theorem. There is an e�ectively computable constant C > 0 such that for any

given " > 0

(2)
X
n�x

a(n+ a(n)) = Cx+ O(x11=12+"):

Before we give the proof of (2) it should be remarked that very likely the

exponent 11=12 in the error term in (2) is far from the best possible one. In fact,

I conjecture that the error term in question is O(x1=2+") for any given " > 0 and


(x1=2��) for any given � > 0. It would be interesting to compare C in (2) with

the constant

C0 = lim
x!1

x�1
X
n�x

a(n) = �(2)�(3)�(4) . . . = 2:29485 . . . ;

which represents the mean value of a(n). Numerical computation of C is not easy,

and I cannot rule out the possibility that C = C0.

Henceforth let q denote squarefree numbers (�2(q) = 1) and s squarefull

numbers (p j s implies p2 j s), respectively. We start from

X
n�x

a(n+ a(n)) =
X
k�x"

X
n�x; a(n)=k

a(n + k) =
X
k�x"

S(x; k);

where we used the bound (see [9]) log a(n)� logn= log logn, which implies a(n) �

n" (n � n0), and where we set

S(x; k) :=
X

n�x; a(n)=k

a(n + k) =
X

s�x; a(s)=k

X
q�x=s; (q;s)=1

a(qs+ k)

=
X

s�x�; a(s)=k

X
q�x=s; (q;s)=1

a(qs+ k) + O(x1��=2+")
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uniformly in k, where � is a constant such that 0 < � < 1=3 which will be de-

termined later. Here we used the already mentioned property that a(n) = a(s) if

n = qs, (q; s) = 1, which follows from a(p) = 1 and multiplicativity. Now we shall

use (see [7] and [8]) the uniform estimateX
q�x; (q;r)=1

1 = 6��2x
Y
pjr

(1 + p�1)�1 +O(x1=2r")

to obtain, uniformly for 1 � s � x� < x1=3, 1 � k � x",X
q�x=s; (q;s)=1

a(qs+ k) =
X

d2l�x=s; (d;s)=1; (l;s)=1

�(d)a(d2ls + k)

=
X

d�x�=2; (d;s)=1

�(d)
X

l�x=(d2s); (l;s)=1

a(d2ls + k) +O

�
x

s

X
d>x�=2

x"d�2
�

=
X

d�x�=2; (d;s)=1

�(d)
X
�js

�(�)
X

m�x=(d2�s)

a(d2�sm + k) + O(x1+"��=2 s�1)

=
X

d�x�=2; (d;s)=1

�(d)
X
�js

�(�)
X

n�x;n�k (mod r)

a(n) +O(x�=2+") +O(x1+"��=2 s�1):

Here we set r = d2�s and we used the elementary relations

�2(n) =
X
d2jn

�(d);
X
djn

�(d) =

�
1 n = 1;

0 n > 1:

Moreover the �rst O-term above may be absorbed by the second one if 0 < � < 1=3.

Thus we are left with the evaluation of

T (x; k; r) :=
X

n�x;n�k (mod r)

a(n) (1 � k � x"; 1 � r � x);

and we seek an asymptotic formula for T (x; k; r) with the error term uniform in k

and r. There are results in the literature on T (x; k; r) due to H.-E. Richert [11]

and J. Duttlinger [2]. For (k; r) = 1 one can get by an elementary argument,

uniformly for 1 � r � x,

(3) T (x; k; r) = B(r)x +O((rx)1=2+"); B(r) = O(1=r);

where B(r) is given explicitly by (5) and (6). For 1 � k � x", 1 � r � x, (k; r) > 1

formula (5.2) of Duttlinger's paper implies that uniformly

(4) T (x; k; r) = B(k; r)x+ O((rx)1=2+"); B(k; r) = O(r"�1);

since in that case d = d1d2 � x" and (4) follows by the condition �(m) j d1, �(m) =Q
pjm

p, so that one can majorize over squarefull numbers. Thus combining (3) and

(4) we have a formula for T (x; k; r) valid in all cases, where we set B(r) = B(k; r)

if (k; r) = 1 for notational convenience. If r is bounded by a (relatively) small
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power of x, then both Richert and Duttlinger obtain much sharper results for

T (x; k; r), which involve the existence of two more main terms besides B(k; r)x. An

obvious way to improve on the exponent 11=12 in (2) is to sharpen (3) and (4). We

postpone the proof of (3) and carry on with the evaluation of S(x; k). We obtain

S(x; k) = O(x1+"��=2)

+
X

s�x�; a(s)=k

X
d�x�=2; (d;s)=1

�(d)
X
�js

�(�)
�
xB(k; d2�s) +O(x1=2+"d(�s)1=2)

	

= x

� X
s=1; a(s)=k

X
d=1; (d;s)=1

�(d)
X
�js

�(�)B(k; d2�s)

�

+ O(x1+"��=2) +O

�
x1=2+"

X
s�x�

s
X

d�x�=2

d

�

= xA(k) +O(x1+"��=2) + O(x(1+5�)=2+") = xA(k) +O(x11=12+")

for � = 1=6 with

A(k) :=
X

s=1; a(s)=k

X
d=1; (d;s)=1

�(d)
X
�js

�(�)B(k; d2�s):

By using B(k; r)� r"�1 in the relevant range it follows thatX
n�x

a(n+ a(n)) =
X
k�x"

S(x; k) = x
X
k�x"

A(k) + O(x11=12+")

= x

1X
k=1

A(k) + O

�
x
X
k>x"

X
s=1; a(s)=k

s"�1
�
+O(x11=12+")

= x

1X
k=1

A(k) + O(x11=12+");

since a(s) = k implies s � exp(C1 log k= log log k) for some C1 > 0, and
P
s�x

1 �

x1=2. This proves (2) with

C =

1X
k=1

A(k) > 0:

Finally it remains to sketch the proof of (3) for (k; r) = 1. Let �(n) be a

Dirichlet character modulo r. If �0 is the principal character mod r, thenX
n�x

�0(n)a(n) =
X

n�x; (n;r)=1

a(n) =
X

s�x; (s;r)=1

a(s)
X

q�x=s; (q;s)=1; (q;r)=1

1

=
X

s�x; (s;r)=1

a(s)

�
6x

�2s

Y
pjsr

1

1 + p�1
+ O

��x
s

�1=2
x"
��

=
6x

�2

Y
pjr

1

1 + p�1

Y
p-r

�
1 +

a(p2)p�2 + a(p3)p�3 + � � �

1 + p�1

�
+O(x1=2+")
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= 6��2C(r)x+O(x1=2+")

uniformly for 1 � r � x, where we have set

(5) C(r) :=
Y
pjr

1

1 + p�1

Y
p-r

�
1 +

P (2)p�2 + P (3)p�3 + � � �

1 + p�1

�
= O(1):

If �(n) is a non-principal character mod r, then

X
n�x

a(n)�(n) =
X
s�x

�(s)a(s)
X

q�x=s; (q;s)=1

�(q)

=
X
s�x

�(s)a(s)
X

d2l�x=s; (d;s)=1; (l;s)=1

�(d)�(d2l)

=
X
s�x

�(s)a(s)
X

d�(x=s)1=2; (d;s)=1

�(d)�2(d)
X

l�x=(d2s); (l;s)=1

�(l)

=
X
s�x

�(s)a(s)
X

d�(x=s)1=2; (d;s)=1

�(d)�2(d)
X
�js

�(�)�(�)
X

m�x=(d2�s)

�(m):

To estimate the innermost sum above we use the classical P�olya-Vinogra-

dov inequality (see H. Davenport [1, Ch. 23]):

X
M<n�M+N

�(n) = O(r1=2 log r) (� 6= �0; M;N � 1):

This gives

X
n�x

a(n)�(n)� x1=2
X
s�x

a(s)d(s)s�1=2r1=2 log r � (xr)1=2+":

Using then the orthogonality relations for characters (' is Euler's function),

namely

1

'(r)

X
� (mod r)

�(n)��(k) =

�
1 n � k (modr)

0 n 6� k (modr)

�
(k; r) = 1

�

we obtain

T (x; k; r) =
1

'(r)

X
� (mod r)

��(k)

�X
n�x

�(n)a(n)

�

=
6C(r)x

�2'(r)
+O(x1=2+") +

1

'(r)

X
� (mod r); �6=�0

��(k)

�X
n�x

�(n)a(n)

�

= B(r)x +O
�
(xr)1=2+"

�
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uniformly in r, where

B(r) :=
6C(r)

�2'(r)
=(6)

=
6

�2r

Y
pjr

�
1�

1

p

��1�
1 +

1

p

��1Y
p-r

�
1 +

P (2)p�2 + P (3)p�3 + � � �

1 + p�1

�

= O

�
1

r

Y
pjr

1

1� p�2

�
= O

�1
r

�
:

This proves (3), and completes the proof of the Theorem.
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