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GRAPH THEORETICAL PROCEDURES

IN CLUSTERING DISCRETE DATA

Drago�s Cvetkovi�c

We report on di�culties in applying traditional clustering procedures to dis-

crete data. We describe a graph theoretical approach in clustering binary

vectors. New clustering procedures are combined from several algorithms and

heuristics from graph theory and combinatorial optimizations.

1. INTRODUCTION

We consider the problem of clustering data (see, e.g., [1], [2]). The data

are usually represented by vectors from R
n. Euclidean or other kind of distance

function d(x; y) is assumed to be de�ned for any x; y 2 Rn. Given a set of vectors

from Rn, the problem is to partition it into subsets called clusters under various

conditions. Clustering methods are supposed to produce clusters which have the

property that vectors from the same cluster in some sense are \closer" one to the

other than the vectors from di�erent clusters. The number of clusters may but

need not to be given in advance. Sometimes cardinalities of clusters are given or

limited by additional conditions.

In this paper we consider clustering of discrete data. A typical example of

discrete data are binary vectors, i.e. elements of Bn where B = f0; 1g. When

standard clustering procedures (see, e.g., [1], [2]) are applied to binary vectors, the

resulting clustering has usually a low quality. Among other things, the clustering

is highly dependent of the ordering of vectors.

To avoid these di�culties it seems reasonable to use speci�c properties of

discrete data and to apply combinatorial, including graph theoretical, tools in han-

dling the problem. We have developed a number of complex graph theoretical

procedures for clustering binary vectors [4]. In this paper we describe the proce-

dure for clustering into a given number of clusters, which stems from [4]. Other

results from [4] will be published in future papers. The material from this paper has
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been presented at the 10th Yugoslav seminar on graph theory, Sarajevo|Jahorina,

20{21 April 1990 and the 3rd ECCO meeting, Barcelona, 2{4 May 1990.

2. SOME DEFINITIONS

A hypercube Hn of dimension n is the graph whose vertex set is Bn and

two n-tuples are adjacent if they di�er in exactly one coordinate. The number

of coordinates in which n-tuples x; y 2 Bn di�er is called the Hamming distance

between x and y.

For a graph G we de�ne its k-th power Gk. The graph Gk has the same vertex

set as G and vertices x and y are adjacent in Gk if they are at (graph theoretical)

distance at most k in G. For k = 0 the graph Gk consists of isolated vertices. For

k = 1 we have Gk = G. If X is a subset of the vertex set of a graph G then G(X)

denotes the subgraph of G induced by X.

Let X � Bn be a set of binary vectors (n-tuples) which is to be clustered.

Our procedures for clustering makes use of the graph sequence

(1) H0
n
(X);H1

n
(X);H2

n
(X); . . . ;Hn

n
(X)

which is called the basic graph sequence.

Note that two vectors x; y 2 X are at the Hamming distance k if they are

not adjacent in Hk�1
n

(X) and are adjacent in Hk

n
(X). For i = 1; . . . ; n the graph

Hi

n
(X) has all edges fromHi�1

n
(X) plus those ones connecting vectors at Hamming

distance i. H0
n
(X) has only isolated vertices while Hn

n
(X) is a complete graph.

Let the vertex set X of a graph G be partitioned into subsets X1; X2; . . . ; Xm.

A condensation of G is a weighted graph on vertices x1; x2; . . . ; xm (called super-

vertices) in which xi and xj are connected by an edge if there is at least one edge

between Xi and Xj in G. Both supervertices and edges in the condensation carry

weights. The weight of the supervertex xi is equal to jXij while the weight of the

edge between xi and xj is equal to the number of edges between Xi and Xj . We

consider a condensation as a multigraph where edge weights are interpreted as edge

multiplicities while supervertices as vertices and supervertex weights are ignored.

Let A be the adjacency matrix of a (multi-)graph G and let D be a diagonal

matrix with vertex degrees on the diagonal. The matrix C = D � A is called

the Kirchhoff (or Laplacian or admittance) matrix of G. Let �1; �2; . . . ; �n
(�1 � �2 � . . . � �n) be eigenvalues of C. We have �n = 0 and the quantity

a(G) = �n1 is called the algebraic connectivity of G (see [8] or [6], pp. 265{266).

In the clustering procedure, which will be described in the next section, some

algorithms and heuristics described in the literature will be used. We shall quote

them in the sequel.

Algorithm CP. This is an algorithms for �nding components of a graph ([12],

pp. 398{405). One starts from a graph without edges when each vertex represents

a component. Gradually, we introduce edges of the actual graph thus uniting two

components if the edge added links them.
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Algorithm JM. This is an algorithm for partitioning a connected (multi-)graph

into two parts (see [9] or [5], p. 78). The partition is determined by the eigenvector

belonging to the largest eigenvalue of the matrix PAP where A is the adjacency

matrix with ones on the diagonal and P = kpijk
n

1
with pij = �ij � 1=n, �ij being

the Kronecker �-symbol. Vertices with positive coordinates in this eigenvector

form one cluster; those with negative coordinates form the other one.

Heuristic KL. This is a heuristic for partitioning the vertex set of a (multi-)

graph into two parts of given cardinalities with a minimumnumber of edges between

vertices from di�erent parts [10]. One starts from a randomly generated partition

into two parts on which a local optimization is applied making use of exchanging

vertices from di�erent parts.

3. A CLUSTERING PROCEDURE

Let X be a set of binary vectors of dimension n and suppose we have to

cluster it into k (k > 1) clusters. For k = 2 we consider the problem in two

variants: 1� Cluster cardinalities are not given, 2� Cluster cardinalities are given.

Our procedure consists of two phases.

Phase 1. We form the basic graph sequence (1). Let ci be the number of compo-

nents of Hi

n
(X). Components are sequentially determined in graphs from the basic

sequence by algorithm CP. We have c0 = jXj � c1 � c2 � . . . � cn = 1.

There is a non-negative integer s such that cs � k > cs+1, the components of

Hs

n
(X) are clusters and the procedure is �nished. If cs > k > cs+1 we proceed to

Phase 2.

Phase 2. We distinguish cases: 1� k = 2 and 2� k > 2.

Case k = 2. Now Hs+1
n

(X) is connected and we consider the condensation of the

graph Hs+1
n

(X) in which components of Hs

n
(X) play role of supervertices.

We consider two subcases:

1� Cluster cardinalities are not given;

2� Cluster cardinalities are given.

Subcases 1�. If cs > 10 any of the following two procedures can be applied to

the condensation of Hs+1
n

(X):

a) algorithm JM;

b) heuristic KL.

In any of these cases we get two clusters and the whole procedure is �nished.

In variant b) the user can select the range of cluster cardinalities and the

number of random generated staring clusterings. The result in variant a) can serve

as a hint for the range of cluster cardinalities in variant b).

If cs � 10, we form all partitions of the vertex set of the condensation of

Hs+1
n

(X) into two parts since there are only 2cs � 2 such partitions. We �nd the
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best partition with respect to a selected quality criterion (e.g. minimizing the edge

number between two parts). The whole procedure is thus �nished.

Subcase 2�. We apply algorithm JM to the condensation of Hs+1
n

(X). If the

partition thus obtained shows cluster cardinalities required, we have done. Oth-

erwise we apply heuristic KL to the graph Hs+1
n

where the starting partitions are

formed on the basis of information obtained by the working of the algorithm JM.

Let p; q (p � q) be the required cluster cardinalities. Let algorithm JM have given

a solution with cluster cardinalities r; s (r � s). If p < r, from the cluster of

cardinality r we chose those p vertices for which moduli of the coordinates of the

eigenvector from algorithm JM are as great as possible. If p > r, then q < s, and

from the cluster of cardinality s we chose q vertices as above. The result of the

working of heuristic KL for the starting partition so formed is compared with result

for other, randomly generated, starting partitions.

Case k > 2. Now we have cs > k > cs+1 and we get a clustering into k clusters

in one of the following two ways

1� by splitting some of cs+1 components of the graph Hs+1
n

(X) into parts;

2� by uniting some of cs components of Hs

n
(X).

We use �rst way if k is closer to cs+1 than to cs and the second one otherwise.

Splitting components we perform by partitioning a component into two parts

and by iterating this procedure. First we partition components of Hs+1
n

(X) which

do not exist in Hs

n
(X) and if there are not su�ciently many such components

we treat sequentially those which exist in Hi

n
(X) and not in Hi�1

n
(X) for i =

s; s�1; . . . . For components ofHi

n
(X) (i = s+1; s; . . .) we form condensations with

supervertices corresponding to components of Hi�1
n

(X) and for each condensation

we determine the ratio of the algebraic connectivity and the number of vertices.

Condensations are ordered by this ratio and partitioned sequentially into two parts

starting from those with a smallest ratio. In each step of partitioning the newly

generated components are treated as above. For partitioning components into two

parts we apply the procedure from the case k = 2 above.

When uniting components we consider all possibilities of uniting if cs � k <

4. Otherwise we apply the Ward method, which is one of the best hierarchical

clustering methods (see, e.g., [1], [2]).

4. COMMENTS

Both theoretical considerations and experiments on a computer have indi-

cated the inadequacy of standard clustering methods to handle binary vectors.

For example, in hierarchical methods (e.g. single or complete linkage) at each step

there are usually very many pairs of clusters which are equally good candidates to

be united. Hence we can get very di�erent clusterings depending on the choice at

each step or depending of the original ordering of vectors if this ordering determines

the choice. More details will be given in a forthcoming paper.
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Concerning computer experiments, we used the system PARIS [3] for stan-

dard clustering techniques and the system GRAPH [7] as well as some newly de-

veloped software [11] for graph theoretical techniques.

If the procedure �nishes in the �rst phase, the clusters obtained are compo-

nents of Hs

n
(X). This means that two vectors from the same cluster are at the

Hamming distance at most s, while two vectors from di�erent clusters are at the

Hamming distance greater than s. If the procedure �nishes in the second phase,

this nice property does not hold any more. Now some vectors from di�erent clusters

can be at distance s or less than s but the procedure tends to minimize the number

of such cases.

When splitting a componentC ofHi

n
(X) in the second phase, we actually split

its condensation where supervertices are components of Hi�1
n

(X) from which C has

been created. In this way we ensure that two vertices from the same component of

Hi�1
n

(X) cannot appear in di�erent clusters.

The algebraic connectivity is known to be a very useful parameter for describ-

ing the \shape" of a graph (see, e.g., [6, p. 266]). Indeed, low algebraic connectivity

shows small connectivity and girth and high diameter, although such a statement

lacks a precise formulation. In the context of clustering, low algebraic connectivity

indicates that the graph has good clustering properties.

Algorithm JM and the calculation of the algebraic connectivity have com-

plexity O(jXj3) while other parts of the procedure have lower complexities. There-

fore the whole procedure has complexity O(jXj3) and this is the same as in many

standard clustering procedures. However, theoretical reasons and numerical experi-

ments show that the graph theoretical procedure is superior to standard procedures

in clustering binary vectors.
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