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CONTINUOUS LINEAR FUNCTIONALS

AND NORM DERIVATIVES

IN REAL NORMED SPACES

Sever Silvestru Dragomir

Some approximation theorems for the continuous linear functionals on real

normed linear spaces in terms of norm derivatives are given.

1. INTRODUCTION

Let (X; k � k) be a real normed space and consider the norm derivatives:

(x; y)i(s) := lim
t!0�(+)

ky + txk2 � kyk2

2t
; for all x; y 2 X.

For the sake of completeness we list some usual properties of these semi-inner

products that will be used in the sequel:

| (x; x)p = kxk2 for all x in X;

| (�x; y)s = (x;�y)s = �(x; y)i, if x; y are in X;

| (�x; �y)p = ��(x; y)p for all x; y in X and �� � 0;

| (�x+ y; x)p = �(x; x)p + (y; x)p if x; y belong to X and � is in R;

| (x+ y; z)p � kxkkzk+ (y; z)p for all x; y; z in X;

| the element x in X is Birkhoff orthogonal over y in X, i.e., kx+ tyk �
kxk for all t in R i� (y; x)i � 0 � (y; x)s, we denote x ? y (B);

| the space (X; k � k) is smooth i� (y; x)i = (y; x)s, for all x; y in X or i�

( ; )p is linear in the �rst variable;

where p = s or p = i.

For other properties of ( ; )p in connection to the best approximation ele-

ment or continuous linear functionals see [2] where further references are given.
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2. A CHARACTERIZATION OF REFLEXIVITY

The following theorem of R.C. James [3] is well-known:

Theorem 1. Let X be a Banach space. X is re
exive if and only if for every

closed and homogeneous hyperplane H there exists a point x in X, x 6= 0, such

that x is Birkhoff orthogonal over H (we denote x ? H (B)).

The next theorem improves this result for real spaces.

Theorem 2. Let X be a Banach space. X is re
exive if and only if for every

continuous linear functional f on X there exists an element u in X such that the

following estimation holds:

(1) (x; u)i � f(x) � (x; u)s for all x 2 X.

Let H be a closed and homogeneous hyperplane inX and f : X ! R

be a continuous linear functional on X such that H = Ker(f). Then from (1) it

follows that u ? H (B) and by James's theorem, we conclude that X is re
exive.

Now, assume that X is re
exive and let f be a nonzero continuous linear

functional on it. Since Ker(f) is a closed and homogeneous hyperplane in X there

exists, by James's theorem, a nonzero element w0 in X so that:

(2) (x;w0)i � 0 � (x;w0)s for all x 2 Ker(f).

Because f(x)w0 � f(w0)x 2 Ker(f) for all x in X, from (2) we derive that:

(3)
�
f(x)w0 � f(w0)x;w0

�
i
� 0 �

�
f(x)w0 � f(w0)x;w0

�
s

for all x in X and since�
f(x)w0 � f(w0)x;w0

�
p
= f(x)kw0k2 �

�
x; f(w0)w0

�
q
; x 2 X

where p 6= q, p; q 2 fi; sg, we conclude, by (3), that�
x; f(w0)w0

kw0k2
�

i

� f(x) �
�
x; f(w0)w0

kw0k2
�
s

; x 2 X

from where results (1) with u := f(w0)w0=kw0k2. This completes the proof.

The following corollary holds (see also [4]):

Corollary. Let X be a Banach space. Then the following statements are equiv-

alent :

i) X is re
exive and smooth;

ii) for every continuous linear functional f : X ! R there exists an element

u in X such that :

(4) f(x) = (x; u)s for all x 2 X.

Remark 1. If f satis�es (1) or (4) then kfk = kuk and f(u) = kuk2. The proof
of this fact is obvious and we shall omit the details.
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3. APPROXIMATION OF CONTINUOUS LINEAR FUNCTIONALS

The following approximation of continuous linear functionals in terms of norm

derivatives is valid:

Theorem 3. Let X be a real normed linear space and f be a nonzero continuous

linear functional on it. Then for every " > 0 there exists a nonzero element x" in

X and a positive number r" so that :

(5) jf(x)� (x; x")pj � " for all x 2 �B(0; r") and p 2 fi; sg,
where �B(0; r") is the closed ball fx 2 X j kxk � r"g.

Let " > 0. Then there exists a nonzero element y" in X such that

ky"k = " and y" =2 Ker(f).

On the other hand, we have:

j(y; y")sj � kyk ky"k = "kyk for all y 2 Ker(f).

Now, for all x in X we have y := f(x)y" � f(y")x 2 Ker(f), and by the above

inequality, we deduce that:���f(x)y" � f(y")x; y"
�
s

�� � 2"2kfk kxk for all x 2 X.

On the other hand, a simple calculation shows that�
f(x)y" � f(y")x; y"

�
s
= f(x)ky"k2 �

�
x; f(y")y"

�
i
;

for all x in X and then the above inequality becomes:����f(x) �
�
x; f(y")y"

ky"k2
�
i

���� � 2kfk kxk for all x 2 X.

Putting x" := f(y")y"=ky"k2 6= 0 and r" := "=2kfk > 0 we obtain the estima-

tion (5) for p = i. Now, it is obvious that if we replace x by �x, then (5) holds for

p = s too. This completes the proof.

Now, we shall introduce a de�nition.

De�nition 1. A nonzero continuous linear functional f de�ned on real normed

space X is said to be of (APP)-type if for any " 2 (0; 1) there exists a nonzero

element y" in X such that :

(6) j(y; y")pj � "kyk ky"k for all y 2 Ker(f),

where p = s or p = i.

Remark 2. Clearly, y is not in Ker(f) and

j(y; y")ij � "kyk ky"k for all y 2 Ker(f)

if and only if:

j(y; y")sj � "kyk ky"k for all y 2 Ker(f)

where " 2 (0; 1).

The following result improves Theorem 3.
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Theorem 4. Let f be a nonzero continuous linear functional of (APP )-type.

Then for any " > 0 there exists a nonzero element x" in X such that :

(7) jf(x) � (x; x")pj � "kxk for all x 2 X

and for any p 2 fs; ig.
Since f is nonzero it follows that Ker(f) is closed inX and Ker(f) 6=

X. Let " > 0 and put �(") := "=2kfk. If �(") � 1, then there exists an element

y" 2 X nKer(f) such that

(8) j(y; y")sj � �(")kyk ky"k for all y 2 Ker(f).

If 0 < �(") < 1 and since the functional f is of (APP)-type there exists an

element y" 2 X nKer(f) such that (8) holds.

Put z" := y"=ky"k. Then for all x 2 X we have y := f(x)z" � f(z")x belongs

to Ker(f) which implies, by (8), that:���f(x)z" � f(z")x; z"
�
s

�� � �(")kf(x)z" � f(z")xk �
� 2�(")kfk kxk � "kxk for all x 2 X.

On the other hand, as above, we have:�
f(x)z" � f(z")x; z"

�
s
= f(x) �

�
x; f(z")z"

�
i

for all x 2 X

and denoting x" := f(z")z" 6= 0 we obtain:

jf(x) � (x; x")ij � "kxk for all x 2 X.

If we replace x by �x in the above estimation we get:

jf(x) � (x; x")sj � "kxk for all x 2 X

and the proof is �nished.

Remark 3. The relation (7) is equivalent to:

(70) jf(x) � (x; x")pj � " for all x 2 �B(0; 1).

De�nition 2. The normed linear space X is said to be of (FAPP )-type if every

nonzero continuous linear functional on it is of (APP )-type.

Some examples of (FAPP)-spaces will be given in the following.

4. "-BIRKHOFF ORTHOGONALITY IN NORMED SPACES

Let X be a normed linear space over the real or complex number �eld K

The following de�nition is a generalization of Birkhoff's orthogonality in normed

spaces.

De�nition 3. Let " 2 [0; 1). The element x 2 X is said to be "-Birkhoff

orthogonal over y 2 X if

kx+ �yk � (1� ")kxk for all � 2 K.
We denote x ? y ("-B).
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If A is a nonempty subset of X, then by A? ("-B) we denote the set of all

elements which are "-Birkhoff orthogonal over A, i.e.,

A? ("-B) := fy 2 X j y ? x ("-B) for all x 2 A.g
We remark that 0 2 A?("-B) and A \A? ("-B) � f0g for every " 2 [0; 1).

The following lemma is a variant of F. Riesz result (see for example [5,

p. 84]):

Lemma 1. Let X be a normed space and G be its closed linear subspace. Suppose

G 6= X. Then for any " 2 (0; 1) the "-Birkhoff orthogonal complement of G is

nonzero.

Let �y 2 X nG. Since G is closed, d(�y;E) = d > 0. Thus there exists

y" 2 G such that d � k�y � y"k � d=(1� "). Putting x" := �y � y" we have x" 6= 0

and for all y 2 G and � 2 K we obtain:

kx" + �yk = k�y � y" + �yk = k�y � (y" � �y)k � d � (1� ")kx"k
what means that x" 2 G? ("-B). This completes the proof.

Note that the next decomposition theorem holds.

Theorem 5. Let X be a normed linear space and G be its closed linear subspace.

Then for any " 2 (0; 1) we have the decomposition: X = G+G? ("-B).

Suppose G 6= X and x 2 X. If x 2 G, then x = x+ 0 with x 2 G

and 0 2 G? ("-B). If x =2 G, then there exists an element y" 2 G such that:

0 < d = d(x;G) � kx� y"k �
d

1� "
:

Since x" := x�y" 2 G? ("-B) (see the proof of the above lemma) we conclude

that x = y" + x" with y" 2 G and x" 2 G? ("-B). This completes the proof.

5. "-ORTHOGONALITY IN THE SENSE OF NORM DERIVATIVES

We shall begin with a de�nition.

De�nition 4. Let " 2 [0; 1). The element x 2 X (X is a real normed space) is

called "-orthogonal in the sense of semi-inner product ( ; )p (p = s or p = i) over

the element y 2 X or x is p-orthogonal on y, for short, if

(9) j(y; x)pj � "kxkkyk:
We denote x ? y ("-p).

If A is a nonempty subset of X then by A? ("-p) we shall mean the set of all

elements in X which are p-"-orthogonal on A, i.e.,

A?("-p) := fy 2 X j y ? x ("-p) for all x 2 Ag:
It is easy to see that 0 2 A? ("-p) and A\A? ("-p) � f0g for all " 2 [0; 1) and

if A = �A then A? ("-s) = A? ("-i) (and we denote A?(") := A?("-i) = A?("-s)).

The next proposition is valid in the particular case of inner product spaces.
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Proposition 1. Let (X; ( ; )) be a real inner product space and " 2 [0; 1). Then

the following statements hold :

i) x ? y ("-B) i� x ? y (�(")) where �(") :=
p
(2 � ")";

ii) x ? y (") i� x ? y (�(")-B) where �(") := 1�
p
1� "2.

i) It is clear that x ? y ("-B) if and only if kx+ tyk2 � (1�")2kxk2,
which is equivalent to: kyk2t2 + 2(x; y)t � "(" � 2)kxk2 � 0 for all t 2 R, i.e.,
j(x; y)j2 � "(2 � ")kxk2kyk2 and the statement is proved.

ii) Follows from i).

In virtue of this fact we can introduce the following concept.

De�nition 5. A real (smooth) normed space is called of (pSAPP)-type ((SAPP)-

type) if there exists a mapping � : [0; 1)! [0; 1) such that :

i) �(") i� " = 0;

ii) x ? y (�(")-B) implies x ? y ("-p) for all " 2 (0; 1), where p = s or p = i

(p = s = i).

Remark 4. The previous proposition shows that every inner product space is a

smooth normed space of (SAPP)-type. In Section 6 we shall point out other classes

of smooth normed spaces of (SAPP)-type.

Lemma 2. Let X be a normed space of (pSAPP )-type (p = s or p = i). If G is a

closed linear subspace in X and G 6= X, then for any " 2 (0; 1) the p-"-orthogonal

complement of G is nonzero and G? ("-i) = G? ("-s) (we denote G? (")).

The proof is obvious from Lemma 1 observing that G? ("-B) � G? ("-p) for

all " 2 (0; 1) and to the fact that G = �G.
Using Theorem 5 we also have:

Theorem 6. Let X be a normed space of (pSAPP )-type and G be its closed linear

subspace. Then for every " 2 (0; 1) we have the decomposition

X = G+ G? ("):

Finally, we note that the following theorem holds.

Theorem 7. If X is a real normed space of (pSAPP )-type (p = s or p = i) then

X is a real normed space of (FAPP )-type.

Let f be a nonzero continuous linear functional on x and " 2 (0; 1).

Then G := Ker(f) is a closed linear subspace in X and G 6= X. Applying Lemma 2

it follows that G? ("-p) is nonzero, i.e., there exists an element x" 2 X n f0g such

that

j(y; x")pj � "kyk kx"k for all y 2 Ker(f),

i.e., f is a functional of (APP)-type. This completes the proof.

Further on, we shall give some examples of normed spaces of (SAPP)-type

which are not usual inner product spaces.
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6. EXAMPLES OF NORMED SPACES OF (SAPP)-TYPE

Let (
;A; �) be a measure space consisting of a set 
, a �-algebraA of subsets

of 
 and a countably additive and positive measure � on A with values in R[f1g.
If we denote Lp(
) � Lp(
;A; �), p > 1, the real Banach space of p-integrable

functions on 
, then Lp(
) is smooth and:

lim
t!0

kx+ tykp � kxkp
t

= kxk1�p

p

Z



x(s)p�1 sgn(x(s))y(s) d�(s)

for all x; y 2 Lp(
), x 6= 0, (see for example [1, p. 314]).

Suppose p � 2 and put p = 2k + 2. Then:

(y; x)q = kxk�2k
p

Z



x2k+1(s)y(s) d�(s) (here q = s = i)

for all x; y 2 Lp(
), x 6= 0, and (y; 0)q = 0 if y 2 Lp(
).

If we put:

(y; x)0q := lim
t!0

(y; x+ ty)q � (y; x)q

t

then (y; x)0q exists for all x; y 2 Lp(
) and a simple calculation shows that:

(10) (y; x)0q = (2k + 1)kxk�2kp

Z



x2k(s)y2(s) d�(s)

� 2kkxk�2k�2p

�Z



x2k+1(s)y(s) d�(s)

�2
:

On the other hand, by the H�older inequality, we have:

Z



x2k(s)y2(s) d�(s) �
�Z




x2k+2(s) d�(s)

� 2k
2k+2

�Z



y2k+2(s) d�(s)

� 2
2k+2

and

�Z



x2k+1(s) d�(s)

�2
�
�Z




x2k+2(s) d�(s)

� 4k+2
2k+2

�Z



y2k+2(s) d�(s)

� 2
2k+2

:

Then from (10) we obtain the evaluation

(11) (y; x)0q � (4k + 1)kyk2p for all x; y 2 Lp(
).

Proposition 2. The Banach space Lp(
) with p � 2 is a smooth normed space

of (SAPP )-type.

Let consider the mapping 'x;y : R! R, 'x;y(t) := kx+ tyk2 where
x; y are given in Lp(
). Then 'x;y is two times di�erentiable on R, the second

derivative is nonnegative on R and

'0x;y(t) = 2(y; x + ty)q ; '00x;y(t) = 2(y; x+ ty)0q

for all t 2 R. Applying Taylor's formula for 'x;y we have

kx+ tyk2p = kxk2p + 2t(y; x)q + t2(y; x+ �ty)
0

q ;
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where t 2 R, �t is between 0 and t and x; y are in Lp(
).

Using the inequality (11) we have, for all x; y in Lp(
) and t in R

kx+ tyk2p � kxk
2
p � 2t(y; x)q + (4k + 1)t2kyk2p:

It is clear that if x ? y ("-B) then:

("2 � 2")kxk2p � 2t(y; x)q + (4k + 1)t2kyk2p for t 2 R,

which implies that x ? y (
(")) where 
(") :=
p
"(2� ")(4k + 1). Putting �(") :=

1�
p
1� "2=(4k + 1), " 2 [0; 1), we have � : [0; 1)! [0; 1), �(") = 0 i� " = 0 and

x ? y (�(")-B) implies that x ? y ("-q) for all " 2 (0; 1) (q = s = i), i.e. Lp(
) is a

smooth normed space of (SAPP)-type.

Corollary 1. Let Xp be a linear subspace in Lp(
), p � 2, and G be its closed

linear subspace. Then for all " 2 (0; 1) we have the decomposition Xp = G+G?("),

where G? (") is taken in Xp.

Corollary 2. Let Xp be as above and f be a nonzero continuous linear functional

on it. Then for all " 2 (0; 1), there exists a nonzero element x" in Xp so that :

����f(x) � kx"k�2kp

Z



x(s)x2k+1" (s) d�(s)

���� � "

�Z



jx(s)jp d�(s)
� 1
p

:
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