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CORRECTIONS AND SUPPLEMENTS OF
SOME DETAILS IN TWO FORMER PAPERS

Dusan D. Adamovié

This note contains corrections of some minor mistakes in papers [1] and [2] and
also supplements and improvements of corresponding points in these papers.

0. In this note we shall give, as suggested by the title, not only corrections of
noticed mistakes but also supplements and improvements of corresponding points
in previously published papers [1] and [2]. Those mistakes, observed by the au-
thor immediately after the publications of [1] and [2], have not seriously damaged
the main results of these papers, so that the corresponding places, after necessary
corrections, can be replaced by similar propositions, as will be seen in what follows.

The present author is reputed to be a rather strict, even pedantic reviewer
and critic of mathematical texts, and so it was completely natural and appropriate
that he should apply his usual standards to his own papers.

1. Theorems 1 and 2 in [1] determine general solutions of functional equations

(1) f(flz+y) =f@)+ fly)
and
(2) flaty)=r(f(@)+ f(f(v)

respectively, where, in both cases, the unknown function f can be real (ie. f:R —
R, R desinating the set of all real numbers), or complez (f:C — C, C desinating

the set of all complex numbers). Let us call the first possibility real case and the
second one complex case. By using the system of functional equations

{g(m +y)=g(z) +9(y)

g(g(x)) = g(x) (¢:R—R or ¢:C—C),

(3)

1991 Mathematics Subject Classification: 39B12, 40A05

42



Corrections and supplements of some details in two former papers 43

one can, on account of Lemma 1 in [1], state the mentioned theorems in the following
manner, different from that in which they really have been stated in [1]. (The
formulations of Theorems 1 and 2 given in [1] are directly, without regard to Lemma
1, more informative than the formulations we give now, but these last formulations
are more suitable for the following exposition; otherwise, on the basis of Lemma 1
in [1] the first formulations can be deduced from the second ones, and vice versa).

I. The general solution of the functional Equation (1) is given by f(z) = g(x)+ A
(g arbitrary solution of (3), constant X arbitrary element of g(R), respectively
of g(C)).
II. The general solution of the functional Equation (2) is given by f(z) = g(z)
(g arbitrary solution of (3)).

In [1], under the titles “Corollary of Theorem 17 and “Corollary of Theorem
2” respectively, (without proof) the following sentences were formulated:
I'. All continuous solutions of Equation (1) are given by f(x) = x+X (X arbitrary
real, or complex constant), f(z) = 0.
I1”. Equation (2) gas only two continuous solutions, given by f(z) = z and by
f(xz)=0.
However, statements I' and 11" are not true in the complex case, while they
remain true in the real case.

This incorrectness resulted from the circumstance that, considering the ques-
tion of continuous solutions of (1) and (2), we presumed by mistake that even in the
complex case (f:C — C) the general continuous solution of CAUCHY’s functional
equation

(4) gz +y)=g(z)+g(y)
is given by
f(z)=Cx (C arbitrary complex constant).

In fact, the general continuous solution of (4) in the complex case can be
expressed in the following manner

(5) g(@)=(a+iy)Rx + (B + i) Sz (a, B, v, & arbitrary real constants).

Using this fact and statements I and II, one arrives at the following correct
version of corollaries of theorems in [1].

Corollary of Theorem 1. All continuous solutions of Equation (1) in the com-
plex case are given by:

fl@)=a4+A (X arbitrary complex constant);

(
(2)

fl@)=Rz+ A (X arbitrary real constant);
(2)

flz)=iSz +ip (u arbitrary real constant);
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flx) = (l—i-i(lfa)/ﬂ)(a%m-}—ﬂ%m) + A

(oz and B #£ 0 arbitrary real constants, constant X\ arbitrary element of

{(1+i(1—a)/B) t:t € R});
f(x) = ((1*/3)/0—}—7)(0?}%7—1-/3%7) + A

(oz # 0 and 8 arbitrary real constants, constant A arbitrary element of

{((1=p)/a+i) t:t €R}).
In the real case, all continuous solutions of (1) are given by:
flx)=a24+ X (X arbitrary real constant);
fx)=0.

Corollary of Theorem 2. All continuous solutions of Equation (2) are given
by:

fla)=w;  flz)=0;  fle)=Re;  fla)=iSuw
fx)=(1+i(1—a)/B)(aRe + 3 S2) (a and B # 0 arbitrary real constants);
fl@)=(1=78)/a+1i)(aRe + B S2) (a # 0 and B arbitrary real constants).

In the real case all continuous solutions of (2) are given by

f(x) = x; f(z)=0.

Proof. We shall restrict ourselves to the proof of the assertions concerning
the complex case, because those concerning the real case can simply be verifed.

In view of Theorems I and II, in order to find all continuous solutions of (1)
resp. (2) it is sufficient to find all continuous solutions g(z) of the system (3) of
functional equations and include them into the formulas for the general solution
given in I and II. On the other hand, all continuous solutions of (3) can be obtained
if one determines all values of real constants in (5) for which the second equation
in (3)

9(9(x)) = g(x)

it satisfied. It is easy to establish that, with designations £ = Rz, n = Sz, the last
is equivalent to

alag + Bn) + B(vE + 6n) = a + B, (&,meR),

(€ + Bn) + 6(vE + b6n) = & + b1, (¢&,neR).

It is clear that this condition is equivalent to the following system of equations for
real constants:

(6) ’+By=a, aB+B5=p,  qatéy=rv, B+ =6
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Under the assumption 3 # 0, the first Equation (6) becomes

2
a — X
7 7= ;
(7) 5
and the second one
(8) a+6=1;

it follows from (8) a? — 6% = (a — §)(a +§) = a — §, that is a® — a = §2 — §, which
means that the fourth Equation (6) is satisfied too; (8) also implies that the third
equation is satisfied. So, under the assumption 8 # 0, (6) is equivalent to

5=1 oo < (1 )“)
— — a, v = = — ) .
B B

Similarly, under the assumption v # 0, (6) is equivalent to

a=1-26, 525*62 (:(15)£>.

v v

Further, if 8 = 4 = 0, the second and the third Equation (6) are satisfied, and the
first and the fourth equation become a? = « and §2 = 6, and are satisfied if and
onlyifa=6é=1,ora=6é=0,ora=1land §=0,ora=0and § = 1.

It follows from all previously said and established that both propositions are
true.

2.  One of results in [2] was formulated as follows:

“Proposition 2. For each complex number z and all natural numbers m,

1m+n
" wi)m (n —o0), if|z+1]>1,
2 ()] w
i 9 1 m
oo MR _%8 T o), if|e 1< LA z#O.

’NI,!

If |24+ 1] <1 A 2# 0, we have, more precisely,

m—1

"2k In log™n log n
) ZW(/): o log(=2) + ]y

k=1
log" 'n
+A(m,z)+ 0| ————

n

(n — o0; z complex number, m € N), where C denotes EULER’s constant, A(m, z)
does not depend on z and the determination of the complex logarithm is such that
logl =10
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The part of this proposition stated by the second sentence (i.e. by the text we
have designated here by [ is not true.

More precisely, even this statement would be true if the sum of two last
m—2

members in the right side of (9) were replaced by O(log n) and if everything
concerning A(m, z) were omitted from the further text.

In fact, what we first noticed was the incorrectness of the part of the proof
corresponding to this part of the proposition, and also the fact that this part of
the proposition, changed as we said, can be proved by slight modifications of the
proof. Afterwards, S. SIMIC in [3], determining the infinite asymptotic exposition
of the expression on the left side under the condition |z + 1| < 1 A z # 0, proved
effectively that (9) is not true.

Therefore:

The statement formulated by the second part of Proposition 2 in [2] need be
replaced by the following:

T. If |z+1]<1A z#0, we have, more precisely,

m—1

"2k /n og"n o n
a3 k_’"<k> - %n,! ~ [log(=#) + €] 1(51 — 1)

+ 0 (log"™? n) (n — o0)

(z complex number, m € N), where C denotes EULER’s constant and the determi-
nation of the complex logarithm is such that log1 = 0.

Proof of T. In this proof, as in that exposed in [2], the following two
known results will be used (the second of them is here, as in [2], formulated in a
somewhat more precise form than necessary for the exposition which follows).

Ri1. (Proposition 1 in [2]). The equality

LI LI T e i
Zk_m<k> - Z k1 Z kz.” Z k_[(z+1) m_l]
k=1 " ' ki=1" " ko=1" k=1

holds for each complex number z and for all natural numbers m and n.

R2. (Immediate Corollary of Theorem (8.4) in [4], p.32). For a # —1 and real,

n a+1

log®k 1 ,
3 B F_28 T (a)tAna)  (neN),
— k a+1

where p(«) does not depend on n, the sequence (An(a)) is decreasing for n

large enough and
1 Na3
An(a)0<0g n) (n — o0).

n

neN
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After these remarks, the further text of our proof will be the text of the
corresponding part of the proof in [2] with necessary changes.
Let
[z+ 1] <1 A z#0.

o0 k
This condition implies the convergence of the series > % to the sum

k=1
—log[1 — (24 1)] = —log(—=), with the determination choosen as above. Hence
and in view of R; and Rs, we have
z (z+1)"=1 1 (z+1)
11 — = o - T
o ()X e
1 k=1 k=1 k=1
1 (2 + 1)k 1
= |logn+c+o(= YT o=
[Ogn+ + <n>:|+z k + n

—logn — [log(—2) +C] + 0O (%) (n — 00).

Thus, (10) is true for m = 1. Supposing the validity of (10) for a fixed value of m,
we obtain, using R; and Re,

n n 1 k 1 k1 1 k1 1
_ - - e - km _
IR (ED SEE D DD BN D (PRI
k=1 k=1 ki1=1 ko=1 k=1
n k 1
1 2zt [k
->:>5()
k=1 =1
n -1
1 log"™ k log™
= R — [log(—z) + C] o8 "+ aglog™ 2k
k m! ('m, — )
k=1
log 'k log g™k
a 7m' Z (m — 1 kz
n 2
log" "k
+0 (Z p )
k=1
1 [log™tin log™ n
= —— g7+<p(m)+0 &
m! m+ 1 n

log(— C [log™ log™ ' n
B og(—=z) + og™n bo(m—1)+0 og n
(m —1)! m n

+0 (log,m_1 n)
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logerl n log™
o (m +1)! B [log(—z) + C] m

n m—1
] + 0 (log n)

(n — ),

where (ay)nen 1s a bounded sequence. Especially, for m = 1, logm_Q k in the third

and the fourth row of these formulae ought to be replaced by k! (see (11)) and so

all which follows will be correct in this case, too.

This completes our inductive proof.
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