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A MEAN VALUE THEOREM FOR FOURIER
COEFFICIENTS OF AN EVEN FUNCTION

Ilija Lazarevié, Miodrag Ivovié

In this paper functionals of a simple form are applied to Fourier series. In
this way we obtain some analytical relations between Fourier coeflicients and
series sums in certain characteristic points of the convergence interval. Some
properties of functions in question are characterized by devided differences.
Such type of results could be of interest in the information theory.

—+ o0
Let F(f;z) = ag+ Y (agcoskz + bysinkz) be the FOURIER series of a

k=1
function f in (a,b). In the present paper we shall consider an estimation of the
coefficients aj and bg. From time to time such estimations appears in the literature

in the form of an inequality which contains sums of the form

(1) Zcq‘of(-??io) + Z(iﬂf/(-??n) + -+ Z(:ip,f(p>(m7»p),
i=1 i=1 i=1

where m; are positive integers and where z;; are knots from the segment [a,b].
In a case of nondifferentiable functions it is assumed that the terms containing
derivatives are omitted. Majorant approximations of such type are not generally
studied in mathematical literature and there are some particullar cases obtained by
varions methods. In this paper we shall use the oportunity to introduce a general
method which enables us to obtain aforementioned majorant approximations of
FOURIER coefficients. Basically we use the method of functionals of the simple form.
Using this method it is possible to analyse all of the variants of such formulas. The
same method makes it possible to analyse the influence of some function theoretic
properties (such as the continuity, monotonicity, convexity and differentiability) on
estimation of FOURIER coefficients.

The definition of the functional of the simple form is dependent of the chosen
CHEBYSHEV system. We shall restrict ourselves here by chosing the CHEBYSHEV
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system spanned on an ordinary algebraic polynomials system. The general theory of
the functionals of the simple form is developed by T. POPOVICIU in a large number
of his papers (see, for example, [1], [2], [3]).

Definition 1. ([2]). Let L be real, linear and bounded functional on Cla,b],
(—o0 < a < b < 400). For the functional L it is said that it is of the simple
form if there is a constant K (# 0) and there is n € N (neither is dependent of f),

and for every f there is an increasing sequence of knots €o,€1,...,&nt1 Such that
for any f € Cla,b]
(2) L(f):K[€07£177£’n+17fL

where brackets denote usual divided differences of f.

In fact, the expression (2) is one of the representations of the functionals of
the simple form. The above constants K and n, according that they are not de-
pendent on f, are characteristic for L. The cardinal number of the above knots
in the representation formulae (2) is called here “an index” of the same repre-
sentation. If in (2) we take f(z) = 27!, we obtain L(z"T!) = K because of

[50,51, o ,En+1;m”+1] = 1, which holds true for every sample of knots. In accor-
dance to that it is possible to write
(3) L(f) = L(z""")[€0, &1, - Engrs f]

for any f € Cla,b] instead of (2).

Definition 2. For a linear functional L: Cla,b] — R we shall say that it is n-
exact (i.e. that its degre of exactness is n) if L(z*) = 0 fori = 0,1,...,n and

L(z™) #£ 0.

Theorem 1. ([2]). Bounded linear functional L: Cla,b] — R is of the simple form
if and only if the following two conditions

1° L is n-exact,
2° Lz La((z —1)7) >0
are satisfied for any t € [a,b], where
(1) ( n 0, for x < t
x—t) =
- (x —t)", foraz>t
is well-known splyne-function (of the degree n) and where by Ly we have denoted
that the functional L is applied to (v — 1‘)’_}_ considered as a function of x.

Remark 1. If the domain of the functional L contains (z — )% which is not
continuous (its values by the definition are: 0 for z < ¢ and 1 for > ¢), then the
Theorem 1 is applicable to that case also.

Remark 2. The representation of the simple form can be considered also on some
of the subspaces of Cla, b]. In that case, if the space in consideration contains vectors
1,z,22,...,2""1 then the criterion included in the above Theorem 1 can be used
again.
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From now on, we shall construct an example of majorization of the FOURIER
coefficients on the basis of functionals of the simple form.

Let f € C[—m, 7] be an odd function. We suppose that f is differentiable
in the points which are used. We shall consider approximation formulae of the
following form

k 2v—1
(5) ap ~ M ;(1)”1]”/( o7 71'),

where M is an constant which should be evaluated. For above formulas we are
inspired by the properties of the function cos kx. Namely the equidistancy of its
zeros suggest the equidistancy of the knots of our approximation formulae and
besides the convexity of cos kx implies the alternativity of weight-coefficients.

The following functional can be assigned to (5):

k
(6)  L(f)=ar(f) = M - sk(f), szc(f)=MZ(1>”1f’<2V—f1”>v

where, regarding evenness of the function f, we have:

(7) ar(f) = g/f(T) cos kx dz.

m
0

All knots 2427 are in [0, 7], so we shall consider (6) on the linear space C[0, ]
only.

In what follows we are going to use sums:
(8) sP=1°P - 3P £ 5P — ... 4 (=) 2k — 1)P.
The following formulas can be derived

o 1—(=1)*
k=T
(9) k—1 2

) (4;7 “D= s - 3).

Further it is easy to show:

L(1) = ap(l) — M -0 =0,

L(z) = ap(e) — M - s = 2[(_2;— J_ L= (2—1)’“’
L(I2) = ak(TQ) — ]W%S}C = 4(;21)k — Mn( 1)14:71’
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32
L(z3) = ap(2®) = M e 52
3[(=1)*(4 — 2x2k?) — 4] 32 [(=1)F (4% — 1) — 1]
- _ M )
kA4 8k?
4 4 ™ g
L(m ) = u,k(a: ) — M ngsk

_ (—D*'8(6 — 7%k%) " (—1)k=1a3(4k2 - 3)

k4 2k2

One can immediately see that for k even, the functional L could have a larger degree
of exactness. Thus, this case will be considered in the sequel.

Let us choose M = 7# so that L(z?) becomes zero. It is easy to see that,
. v 2
in this case, L(z®) = 0, and also L(z%) = —85448 < 0. Therefore, for even k we
have an approximative formula

k
4 w1 2v—1
7 2D f< 2 W)

v=1

(10) ag ~= —

of a high degree of exactness: n = 3. We shall prove, however, that the functional

(1) L() = ax() + = zonlf)

(which is adjoined to the above formula), is not of the simple form. To do this, let
us calculate the value of this functional on the splain (z — t)j_ Using (4) we have

Ky

(12) (Lk((l‘ — f)i) = %/(T — t)3cos krdx = % [k2(7r — t)2 —2(1 — cos kf)]

By % ((z— 1)) = 3(x — )3, and using the relation (4), as well as relations (9), we

obtain
3(*%24-7”5), for 0<t<
(13) S"((T o t)i) = orlast), for 205;3W <t< ‘2651;—17r
" for Zelr <t <,
where
il 2
2v —1
: = v—1
(14)  oulat) = 32_1) < 1, t)
32 w2 o ,
T [(—1)*7?(40” — 8o + 3) + 4k” — 1]
+ 3: [(=1)* P (a = 1) + k]t — %[1 — (=112
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and «a is the first index value in the above sum, taking values « = 2,3,...,k. By
inspection of the expression on right hand side of (12) as a function of ¢, we conclude
that ar((z —)3) > 0 for ¢ € (0, 7). Considering this, as well as the third line in
(13), we can derive inequality Lo ((z — t)%) > 0 for t € (%w,w). This fact,
together with L(x%) < 0 implies that the condition 2° in Theorem 1 does not hold

and therefore, the functional L is not of a simple form.

In what follows we shall remain considering the case of even k, and we shall
prove that the constant M in (6) can be determined in such a way that the functional
L is of a simple form, but with a lower index. Let us first consider the sign of

(15) Lx((x—t)}r) :ak((z—t)i) - M -sk((m—t)i).
We find
(16) (J,k((mft)l) = 2 (x —t)coskx dr = i(lfcoskt)‘
- m wk?
t
Denote by D the union of intervales [20‘2;3% 2"2‘;17r) fora =2,4,...,k —2. Using

(4) and (9) we have

k
1) sele=01) = 30 () o= 02| s,

v=1
. sg -s) = _717(721)%1 =-1, for t€D
0, for ¢ e [0,7]\D.

Now it follows
2
—3(1 —coskt) + M, for tc D
(18) Lo((e —1)3) =14 ",
55 (1 — cos kt), for t € [0,7]\D.
From the last expression we conclude that following inequalities hold
i+M<L (x — 1)} <i+M for te€D
k2 - m( T +) - wk?2 ' or
(19)
2
0< Lo((z —t)}) < —3 for ¢ € [0,7]\D,
so, for M > 7# we have
(20) Ly((z—1)}) >0 for te[0,x].

Note that there is no M such that L, is negative on spline (z —t)L. For M = — =35
the functional

(21) L(f) = ar(f) +
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will satisfy L(1) = L(z) = 0, L(2?) = & (> 0) and finally
(22) L(@*)Ly((x —t)L) >0 for te0,n].

From Theorem 1 it follows that the functional in (21) is of a simple form, which
was our aim to prove.

So far we have been studying the problem of existence of a simple form
functional. In what follows we shall show an application to an approximation of
FOURIER coefficients, based on the functional we studied in the first part of this
paper.

Let us state again that the conclusion of simple form of the functional in (21)
was derived under minimal set of assumptions; namely that the functional is defined
on those functions in C[0, 7] that are differentiable at points 22;17r. Under such
assumptions the following representation holds:

2
(23) L() = 5160 1,623,

where &g, €1, &2 are different points in [0, 7]. If we put more assumptions on domain
of L, we shall, of course, get more particular results. Let us state some of them.

1° Let f be a convex function on [0, w]. Then we know that [£g, &1, €a; f] >0
for every choice of different knots. Therefore, from (21) and (23) it follows

2 k v—1pt 2v—1
(24) a,k(f)z—m;(—l) 1f< 2k W)’

for ax being cosine coefficients of an even function. The inequality (24) is a general-
isation of a result in [4], obtained under more severe assumptions. Notice that, by
previous counsiderations, it is obvious that the constant on right hand side of (24)
is the best possible one. For a concave function f, clearly, the opposite inequality
holds.

2°  Formula

k
. . 2 =1 2v—1
(25) ar(f) ~ —= Vil( 1) b ( o 71')

is a quadraturae formula (for f(z)coskaz) and its residum is just the functional L.
There are some known results for the estimation of best bounds for the divided
differences (see for example [5]). Using the quotient representation of L one can
obtain best bounds for the residum of the above quadratic formula.

3° Let us now assume that f has “better” properties. Namely, let f €
C*Ya,b], (n > 0). Then there is a point 7 in the minimal interval containing all
knots &; such that

£t ()
(26) €0, €1, En1i fl = )
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[CAaucHY’s formula]. Thus, a linear functional of a simple form admits the following
integral representation too:

D ()

(27) L(f) = 1)

for any f € C"*Da, p].

In our particular case, we have for the functional in (2):

(28) L(f) =+

for any f € C(2)[O, 7). So, if a function possesses a corresponding differential pro-
perty, we can use differentiability in analyzing the above approximation of FOURIER
coefficients. More details on this see in [7], [8].

4° Finally, assume that all functions this procedure is applied to, have an

integrable (n + 1)-st derivative. Then for a linear functional of a simple form the
following integral (PEANO’s) representation holds (see [9]):

b
(29) L(f) = %/.f“’*”(t)Lx((x — 1)) dt

for any f € C("+1)[(z,b].

In our case we have thus:

2 & (w1 .
0w = 3 (Pt ) ¢ [0 ot

a

for any f € C0, x].
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