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A BRANCH-AND-BOUND TECHNIQUE
FOR COUNTING NON-ISOMORPHIC
HEXAGONAL SYSTEMS

Dragan M. Acketa, Ratko Tosié

A new technique for counting non—isomorphic general hexagonal systems with n
hexagons is presented. The main feature of the method is that it avoids isomor-
phism tests. Instead, the hexagonal systems of a given size are freely generated
within a certain bounded region of the hexagonal grid. The generated duplica-
tions (mutually isomorphic hexagonal systems) are eliminated afterwards by using
the tables of the number of those non-isomorphic hexagonal systems, which are
symmetrical in some sense.

0. INTRODUCTION

The problem of counting non—isomorphic hexagonal systems having the given
number of hexagons is a well-known application of a combinatorial enumeration to
the studies of benzenoid molecules in organic chemistry (see, e.g., [2], [4]).

A standard approach to the exhaustive generation of non—-isomorphic combina-
torial objects within some class C' is "extend and reduce”. The "extend” step gener-
ates all the possible objects of size n+1 within C, that are produced by augmentation
of all non—isomorphic objects of size n within C. The "reduce” step eliminates iso-
morphic copies of size n + 1, leaving exactly one representative for each isomorphic
class. Both steps include expensive isomorphism tests: the local isomorphism tests in
the first case and by far more expensive global isomorphism tests over the generated
catalogues in the second case.

Another approach, due to REID [5], is based on direct constructions of canonical
extensions and canonical representatives of isomorphic classes, without producing mu-
tually isomorphic copies. The canonical constructions are structure-dependent; they
must take into account the features of isomorphic transformations over the consid-
ered structure. Some versions of this approach were also applied to the enumeration
of hexagonal systems ([6]) and to related triangular and square systems as well ([3],
10)).

This paper offers a third approach, when the domain of hexagonal systems is
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considered and when the sole enumeration, without producing catalogues, is required.
Expensive isomorphism tests are completely avoided. The method is based on the
use of the formerly obtained results concerning the symmetric hexagonal systems;
more precisely, those hexagonal systems which have non-trivial symmetry groups.
It is to say that the generation of non—isomorphic symmetric hexagonal systems is
much facilitated, in comparision with the generation of non-isomorphic general hexag-
onal systems. The reason lies in the fact that the search in symmetric cases can be
restricted to a particular part of the hexagonal system, which is being produced. Con-
sequently, the enumeration of symmetric hexagonal systems has been completed (see,
e.g., [2], [7], [8], [11]) with much larger numbers of hexagons than in the general case.

The main idea of the proposed method is to generate hexagonal systems within
a specially shaped region of the hexagonal grid. The generation of all the non—
isomorphic hexagonal systems of a required size is guaranteed. Some of them are
produced several times, but all these multiplicities are known exactly; they depend
on the inherent symmetries of a particular hexagonal system.

1. DEFINITIONS AND NOTATION

The (infinite) hexagonal grid is the figure obtained by tiling the whole plane
with regular hexagons of the same size. The hexagonal system is a part of the hexag-
onal grid, which contains a finite number of hexagons (this number is a parameter
of the system) and which can be surrounded by a closed non—self-intersecting path.
Two hexagonal systems are isomorphic if there is an isometric transformation (a com-
bination of translations, rotations and axial symmetries), which makes them coincide.
There is a bijection between the hexagonal systems and their boundary closed paths,
so the counting the non—isomorphic hexagonal systems can be replaced by the count-
ing of the corresponding closed paths.

The hexagonal grid is further represented by the ”brick—wall type” coordinate
system. The vertices of the hexagons are (in cyclical order) the points with coordinates

(.I'—l,y—i—l), (I—l,y), (%,’l), (.I'—{—l,y), (m+17?]+1)7 (%,y—{—l),

where = 4+ y is odd. In this way, hexagonal grid is embedded in the usual tetragonal
grid; it is obtained from the latter grid by excluding the edges of the form (x,y +1)—
(z,y), where x + y is odd.

The following two features are used to obtain a bounded region of the hexagonal
grid of a reasonable size, which would be sufficient to comprise all the non—isomorphic
hexagonal systems with a given number of hexagons:

e cach hexagonal system S has a left—most hexagon (which has a vertex with the
smallest z—coordinate),

e among the left-most hexagons there exists the lowest one (with the smallest
y—coordinate).

The unique hexagon constructed in this way is labelled by 1. Its vertices (in cyclical
order) will have the coordinates (0, 0), (1,0), (2,0), (2,1), (1,1), (0, 1) in the associated
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coordinate system. This hexagon is the common initial hexagon for all the hexagonal
systems which are going to be constructed.

Hexagonal systems having at most n hexagons are counted inside the bounded
region of the special form Cage(n). Cage(b) is presented in Fig. 1. Note that the
hexagons denoted by the number j belong to Cage(i), for each i > j:

Fig. 1

2. AN ALGORITHM FOR THE RECURSIVE GENERATION OF
CLOSED PATHS ASSOCIATED TO HEXAGONAL SYSTEMS

Hexagonal systems can be uniquely represented by their contours, i.e., by closed
paths without intersections, which frame the hexagons of the system. On the other
hand, a path is constructed by applying an advancing process (to be defined below),
which is applied to each point of that path, which is being generated.

A boolean matrix Liber plays a central role in directing the path. It determines
whether a point is free or not for the continuation of a path.

The initial values of Liber are used to determine the search area — Cage(n) by

putting the values "TRUE” in the interior of C'age(n) and the values "FALSE” on its
border by the following PASCAL procedure ”Initialize”:

Procedure Initialize (n :integer;
var liber: array [—1..2n + 1, —n..n + 1] of boolean);
begin (* Initialize *)
(* Liber is primarily initialized to be TRUE
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within the rectangle which covers the whole cage *)
for x := -1 to 2n + 1 do
for y := —n to (n + 1) do liber [z,y] := true;
(* Upper and lower border of the cage *)
for 2 := 0 to n do if (n — ) mod 2 = 0 then begin
liber [z,n + 1] := false;

liber [z, —n] := false end;
(* Left border of the cage — upper part *)
for y := 2 to n do liber [—1,y] := false;

(* Left border of the cage — lower part *)

for y := —n + 1 to 1 do liber [0, y] := false;

(* Right border of the cage — upper part *)

for y := 1 to n do liber [2n + 2 — y,y] := false;

(* Right border of the cage — lower part *)

for y := 0 downto —n + 1 do liber 2n + 1 + y, y] := false;
end (* Initialize *)

Ezample. The ”shell” of true (T) and false (F) values of Liber in the initial
position of Cage(3) seems as follows:

Mmoo
R R R B
R I R e A B
R I R e A B
R I R e A B
R I R e A B
R R R
Mo
m

The matrix Liber is adjusted during the generation of paths. Its value in a
point (x,y) is turned to FALSE after the point (x,y) is added to the current path;
re—entering (x,y) in such a state would lead to a self-intersection of the path. On the
other hand, the TRUE value of liber [z, y] is returned after the point (x,y) is excluded
from the current path; new possibilities for re-entering it are opened in that case.

Example. The effect caused in the matrix Liber after the path has passed
through a ”free” zone seems as follows:

e
e
R
R
R
e N
e R
Mo M
Mo M
oM

We proceed with a detailed description of this advancing process:

The common initial point for all the paths that we use is the point (1,0) — the
middle point of the bottom edge of the initial hexagon. In addition, the common final
point of all these paths will be (1,1) (these two points were specially marked on the
figure in Section 1). Although the initial and the final point do not coincide, all the
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constructed paths will be closed, since the path connecting the points (1,1), (0, 1),
(0,0) and (1,0), in this order, will be always additionally included.

There are six directions, all of which are be shown on an oriented hexagon, both
in the usual and in the ”brick—wall” representation (see Fig. 2).

Fig. 2

Each of these directions may be also viewed as a state associated to an edge
before entering a vertex. The initial state is 1. There are two continuations from
each vertex (z,y) (the left one and the right one). The direction (state) of these
continuations depends on the entering state. Each line of the following transformation
table is corresponded to a state (1: through 6:) and contains the coordinates of the
next point (denoted as (nz,ny)) and the next state for the left turn (L) and the right
turn (R):

1: L(z+1,9;2) R(z,y—1;6) 2: L(z,y+1;3) R(z+1,y;1)
3: Lx—1,y;4) R(z+1,y;2) 4: L(z—1,y;5) R(x,y+1;3)

The following procedure "Develop” regulates the advancing process. Two re-
cursive calls of this procedure are naturally corresponded to the two continuations
after each vertex (z,y):

Procedure Develop (z,y :integer);
begin
liber[z,y| := false;
length_of _path := length_of _path + 1,
(* the point (z,y) is added to the current path *)
if (x =1) and (y = 1) then
output a new hexagonal system
else begin
Turn left and find nxz, ny;
if liber [nx, ny] then develop (nz, ny);
Turn right and find nz, ny;
if liber [na, ny] then develop (nz, ny);
end;
liber [z, y] := true;
length_of _path := length_of _path — 1;
(* the point (z,y) is removed from the current path *)
end; (* Develop *)
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The main program, which calls the procedure ”Develop”, has the following
outlook:

begin (* Main *) read(n);
Initialize (n, liber); Develop;
end.

3. COUNTING THE NUMBER OF HEXAGONS

The following lemma offers an easy way for determining the number of hexagons
within a hexagonal system, which is surrounded by a traversed path:

Lemma 1. The number n(H) of hexagons within a hexagonal system H can be counted
on the basis of the following formula:

n(H) = % (Zx(up,?‘() — Zx(down,?‘()) ,

where:

z(up, H) is an x—coordinate with which the step up is done, in the course of
traversing the contour of H (state 3)

z(down, H) is an x—coordinate with which the step down is done, in the course
of traversing the contour of H (state 6)

Proof. The area of a hexagonal system can be partitioned into horizontal
sections of width 1 (several of these sections may have the same y—coordinate). The
hexagons in such a section are represented by rectangles of size 2 x 1; their number
is exactly one half of the difference of z—coordinates of the vertical borders of the
section. @

4. THE NUMBER OF NON-ISOMORPHIC
HEXAGONAL SYSTEMS

The procedure described in Section 2 generates only those hexagonal systems
which

a) contain the initial hexagon, labelled by 1.

b) are included into Cage(n) for some n.

Lemma 2. There is not a non—trivial translation which maps one hexagonal system
satisfying the properties a) and b) to another such hexagonal system.

Proof. If the direction of the translation vector, applied to a hexagonal system
satisfying a) and b), belongs to the angle interval (—90°,+90°], respectively to the
angle interval (4+90°, —90°], then the condition a), respectively the condition b), is
not satisfied with the resulting hexagonal system. ©
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The following theorem gives that the multiple appearances of mutually isomor-
phic copies, which are generated by our algorithm, are exactly known:

Theorem 1. If a hexagonal system H has the symmetry group of order k (where
ke {1,2,3,4,6,12}), then there are exactly 12/k hexagonal systems isomorphic to H
and satisfying the conditions a) and b).

Proof. A consequence of the previous lemma is that there are at most 12
hexagonal systems in the class ¢(H), consisting of all those different hexagonal systems
satisfying a) and b), which can be obtained by applying isometric transformations to
a given hexagonal system H. The hexagonal systems ”parallel” to the hexagonal
systems in ¢(H) are obtained by applying to H the twelve transformations (combina-
tions of rotations and axial symmetries) from the symmetry group D¢ of the hexagonal
grid. If the symmetry group of H is of order k, then there are exactly 12/k different

hexagonal systems, which can be obtained from H by applying the symmetries of Dg.
o

Let n(G,k) denote the number of non-isomorphic hexagonal systems with k
hexagons, which have the symmetry group G. Further, let H (k) denote the total
number of hexagonal systems with k¥ hexagons, which satisfy the conditions a) and b)
(equivalently, which are generated by our algorithm for a given k). Theorem 1 implies
the following equation (see also [9]):

H(k’) :n(DGh, k’) + 277/(06117 k’) + 277,(D3h, k’) + 477,(03}1,, k)—l—
+ 3n(Dap, k) + 6n(Cap, k) + 6n(Cay, k) + 12n(Cy, k).

Remark. The standard denotations of subgroups of D¢ are used here. The
denotations D; and C; correspond to the dyhedral and cyclic groups of order i respec-
tively. In particular, when the cyclic group C» is considered, a distinction is made
between the axial symmetry and rotation for 180° (central symmetry).

On the other hand, the partition of non-isomorphic hexagonal systems on k
hexagons, with respect to their symmetry groups, gives the following equation:

NIS<k) :n<D6ha k) + n<06h; k) + n’(D3}L7 k) + 77/(03},/, k)+
+ n(D2h,a k) + n(CQh, k) + n(CZ'lH k) + n(csz k),

where N 1S5(k) denotes the number of non—isomorphic hexagonal systems on k hexag-
ons.

It should be stressed that the counting of non—isomorphic hexagonal systems
possessing non—trivial symmetries is much facilitated, for their contours need be only
partly generated. Consequently, these numbers are known for much larger values of k
than the number n(Cy, k) (which is by far the largest among the eight values n(G, k)).

Our method for determining the number NI5(k) is the following: the number
H (k) is primarily determined by the algorithm described in Section 2. The num-
bers n,(DGh,k), n(CGh,,k‘), n(Dgh,,k‘), n(Cgh,,k‘), n(Dzh,,k‘), n(CQh,k) and n(C’gU,k‘)
are taken from the literature. The number n(Cjy, k) is determined from the first of
the above two equations and substituted in the second one afterwards.
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Ezample. Using Cage(9), 76663 hexagonal systems with 9 hexagons were pro-
duced. On the other hand, it is known that there are 1, 5, 7, 36, 178 non—isomorphic
hexagonal systems with 9 hexagons possessing the symmetry groups D3y, Csn, Dap,
Cap, Cay respectively. Taking into account that each hexagonal system in these classes
appears respectively 2, 4, 3, 6, 6 times in the class of the constructed hexagonal sys-
tems and that each non—-symmetric (= with the trivial symmetry group C) hexagonal
system appears 12 times, it follows that the number of non—isomorphic non—symmetric
hexagonal systems with 9 hexagons is equal to

76663 —2-1-4-5-3-7T—-6-36—-6-178
12

= 6278,

and finally the number of non—-isomorphic hexagonal systems with 9 hexagons is equal
to
6278 +1+ 5+ 7+ 36 + 178 = 6505.

A table of the calculated numbers of non-isomorphic hexagonal systems seems as
follows:

factor 1 2 4 3 6 6 12
n H(n) Dgp D3y Csp, Dop Cop Coy Cy NIS(n)
1 1 1 0 0 0 0 0 0 1
2 3 0 0 0 1 0 0 0 1
3 11 0 1 0 1 0 1 0 3
4 44 0 1 0 2 1 1 2 7
5! 186 0 0 0 2 1 9 10 22
6 813 0 1 1 3 7 12 57 81
7 3640 1 0 1 3 7 39 279 330
8 16590 0 0 0 6 39 61 1333 1435
9 76663 0 1 5! 7 36 178 6278 6505

The results obtained in the last column coincide with the figures obtained in
[1]. The order of running time for n = 9 was several hours on PC-AT).

5. SOME COMMENTS ON EFFICIENCY

The main computation problem with the presented algorithm is producing a huge
number of hexagonal systems with more than n hexagons within Cage(n). It is
useless to count these hexagonal systems, for such a counting is not complete. Let
T(n) and U (n) respectively denote the total number of generated hexagonal systems
(after the improvements described in 5.1. and 5.2. were implemented) and the number
of "useful” hexagonal systems among them. The following table shows the magnitude
of this problem:
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n 1 2 3 4 5 6 7 8 9
T(n) 1 6 36 239 1745 13694 113343 977104 ?
U(n) 1 4 15 29 245 1058 4698 21208 97951

The data like these imply a high necessity for pruning the search tree, i.e. for
reducing the number of recursive calls of the procedure " Develop”. We sketch three
ideas for such improvements:

5.1 The Minimal Length Completion

The maximal perimeter of a hexagonal system having n hexagons is equal to
4n + 2, [4]. This implies that the recursive calls within the call develop (z,y) should
not be activated (the recursion should be stopped) whenever the following condition
is fulfiled:

|z — 1|+ |y — 1| > (4n + 2) — (3 + length-of-path),

that is, whenever the minimal number of steps needed to complete the contour is
greater than the maximal number of the remaining edges with hexagonal systems
having n hexagons.

5.2 Forbidden Right Turnings in the Peripheral
Area of Cage(n)

The right turnings should not be allowed along the peripheral edges of the cage,
since there is no possibility in such cases to complete the closed path without self-
intersections. This is regulated by the following boolean variable Allowed which is
applied in the conjuction with the boolean matrix Liber on the occasion of right
turnings:

Allowed = false  (with Cage(n)) for:

( state =1 , r —y = 2n — 1,y < 0 ) or
( state =2 . x + oy = 2n ,y > 0 ) or
( state =3 : y = n ) or
( state=4 or 5 , =z = 1 .,y > 0 ) or
( state=4 or 5 , =z = 2 , y < 0 ) or
( state =16 : y = —n + 1 )

otherwise Allowed = true.

5.3 A Convex Hull Improvement of the Distance

A further improvement of the minimal length completion is reached by observing
that the current path cannot be evaded from the left—hand side. This implies that
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the minimal number of edges needed to complete the path from a point (z,y) is not
smaller than

lv —pl+ |y —pl+p— 1 +]¢ -1,

where the numbers p and ¢ are respectively for 1 greater than the largest x—coordinate
(respectively y—coordinate), which was reached along the path. The above expression
should replace the left-hand side of the inequality in 5.1.

In some cases new transition points (besides (p, q)) should be inserted between
the current point (x,y) and the final point (1,1). An elaboration of this idea leads to
the necessity to consider the length of the convex hull of the path.

6. CONCLUSION

The proposed method for counting non—isomorphic general hexagonal systems
with a given number of hexagons avoids expensive isomorphism tests. It uses the
known numbers of non—isomorphic symmetric hexagonal systems and produces all the
hexagonal systems containing a fixed hexagon, which might arise within a specially—
shaped closed region of the hexagonal grid.

Although the isomorphism tests are avoided, the method is not very efficient
due to the counting of a huge number of undesirable hexagonal systems. This failure
of the method can be partly overcome by introducing some improvements, which help
the "hopeless” recursions to be cut in early stages of the recursion. We hope that
some more sophisticated ideas may lead to a considerable improvement of efficiency
of the method.
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